Abstract

Jones matrix imaging of biological samples by a polarization-sensitive Fourier-domain optical coherence tomography has been demonstrated using a two-dimensional CCD camera to obtain two spectra corresponding to the orthogonal polarization components simultaneously.

The measurement results of a quarter-wave plate are compared between the two incident polarization sets, H-V linear and R-L circular polarization. Jones matrix imaging of the bovine tendon is demonstrated. Measured Jones matrix images are converted to equivalent Müller matrix images. Local polarization properties are obtained by longitudinal differentiation of Jones matrix components. The layered structure of the bovine tendon and birefringence are revealed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  3. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  4. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  5. P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
    [CrossRef]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain versus time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  8. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  9. L. V. Wang and Gang Yao, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  10. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  11. S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
    [CrossRef] [PubMed]
  12. S. Jiao, G. Yao, and L. V. Wang, "Depth-resolved two-dimensional stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000).
    [CrossRef]
  13. Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
    [CrossRef]
  14. M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
    [CrossRef] [PubMed]
  15. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  17. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  18. J. Schmit and K. Creath, "Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry," Appl. Opt. 34, 3610-3619 (1995).
    [CrossRef] [PubMed]
  19. F. L. Roy-Brehonnet and B. L. Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
    [CrossRef]
  20. C. Whitney, "Pauli-Algebraic operators in polarization optics," J. Opt. Soc. Am. 61, 1207-1213 (1971).
    [CrossRef]

2004 (4)

2003 (2)

2002 (4)

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

L. V. Wang and Gang Yao, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
[CrossRef]

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

1998 (1)

G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1997 (2)

F. L. Roy-Brehonnet and B. L. Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

1995 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1971 (1)

Andretzky, P.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

Bajraszewski, T.

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Creath, K.

de Boer, J. F.

Endo, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Fercher, A.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain versus time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Herrmann, J. M.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

Hitzenberger, C. K.

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Itoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Jeune, B. L.

F. L. Roy-Brehonnet and B. L. Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

Jiao, S.

Kiesewetter, F.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

Konzog, M.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

Kowalczyk, A.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Makita, S.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Milner, T. E.

Nassif, N.

Nassif, N. A.

Nelson, J. S.

Park, B. H.

Pierce, M. C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Roy-Brehonnet, F. L.

F. L. Roy-Brehonnet and B. L. Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

Schmit, J.

Schultz, A.

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

Sutoh, Y.

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Targowski, P.

Tearney, G. J.

Todorovic, M.

van Gemert, M. J. C.

Wang, L. V.

Whitney, C.

Wojtkowski, M.

Yao, G.

Yao, Gang

Yasuno, Y.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Yatagai, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Yun, S. H.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

J. Biomed. Opt. (3)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (7)

M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Opt. Lett. 29, 2402-2404 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

L. V. Wang and Gang Yao, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999).
[CrossRef]

Prog. Quantum Electron. (1)

F. L. Roy-Brehonnet and B. L. Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of parallel-detecting polarization-sensitive Fourier-domain OCT. Pol., polarizer; HW1, HW2, zero-order half-wave plate; QW1, QW2, zero-order quarter-wave plate; Obj., objective lens; CL, cylindrical lens.

Fig. 2
Fig. 2

Jones matrix of the quarter-wave plate. (a) Amplitude of J rQ11 and J rQ21; (b) phase difference between J rQ11 and J rQ21.

Fig. 3
Fig. 3

Calculated Müller matrix of the quarter-wave plate.

Fig. 4
Fig. 4

(a) Orientation degree and (b) phase retardation of the quarter-wave plate measured by the right- and left-hand circular, and the horizontal and vertical linear polarized light.

Fig. 5
Fig. 5

Jones matrix images of bovine tendon.

Fig. 6
Fig. 6

Müller matrix images of bovine tendon.

Fig. 7
Fig. 7

(a) Phase retardation before differentiation, (b) after differentiation, (c) orientation of optical axis, and (d) diattenuation after differentiation of bovine tendon.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I ^ ( ω ) = | E ^ p ( ω ) | 2 + | E ^ r ( ω ) | 2 + E ^ p ( ω ) E ^ r * ( ω ) + E ^ p * ( ω ) E ^ r ( ω ) ,
I ( t ) = Γ [ E p ] ( t ) + Γ [ E r ] ( t ) + Γ [ E p ( t ) , E r * ( t ) ] + Γ [ E p * ( t ) , E r ( t ) ] .
I PS ( t ) = Γ [ E p ( t ) , E r * ( t ) ] .
[ J T 11 J T 12 J T 12 J T 22 ] = [ E p1H E p2H E p1V E p2V ] [ E i1H E i2H e i β E i 1 V E i2V e i β ] 1 ,
J QW1 = 1 2 [ 1 i i 1 ] .
J i = II m = 1 i J m s t II m = i 1 J m s ,
J i r = J i s t J i s = ( II m = 1 i - 1 J m s t ) 1 J i ( II m = i - 1 1 J m s ) 1 .
J i r = ( U i s H i s ) t U i s H i s = U i s       2 H i s        2 ,
r i = 2 cos 1 { 1 2 | tr U i s + [ det U i s / | det U i s | ] tr U i s | [ tr ( U i s U i s ) + 2 | det U i s | ] 1 / 2 } ,
D i = { 1 4 | detH i s | 2 [ tr ( H i s H i s ) ] 2 } 1 / 2 .
ϕ i = J i s12 + J i s21 J i s11 J i s22 .
J rQ = J sQ t J sQ = [ cos ( 2 θ ) sin ( 2 θ ) sin ( 2 θ ) cos ( 2 θ ) ] .
E p = J det J BS R J T J BS T E i ,
E i    cal = J det J BS R J M J BS T E i ,
[ E i1H            cal E i2H            cal E i1V            cal E i2V            cal ] = [ 1.00 0.17 0.12 i 0.18 + 0.10 i 0.96 ] .
J T = [ E p1H E p2H E p1V E p2V ] [ E i1H            cal E i2H            cal e i β E i1V            cal E i2V            cal e i β ] 1 = J det J BS R J T J M       1 J BS R             1 J det           1 ,

Metrics