Abstract

The performance of a pyroelectric detector with a carbon multiwalled nanotube coating was evaluated in the 0.914µm wavelength range. The relative spectral responsivity of this detector was shown to be flat over most of the wavelength range examined, and the spectral flatness was shown to be comparable to the best infrared black coatings currently available. This finding is promising because black coatings with spectrally flat absorbance profiles are usually associated with the highest absorbance values. The performance of the detector (in terms of noise equivalent power and specific detectivity) was limited by the very thick (250µm thick) LiNbO3 pyroelectric crystal onto which the coating was deposited. The responsivity of this detector was shown to be linear in the 0.062.8mW radiant power range, and its spatial uniformity was comparable to that of other pyroelectric detectors that use different types of black coating. The carbon nanotube coatings were reported to be much more durable than other infrared black coatings, such as metal blacks, that are commonly used to coat thermal detectors in the infrared. This, in combination with their excellent spectral flatness, suggests that carbon nanotube coatings appear extremely promising for thermal detection applications in the infrared.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Blevin and J. Geist, "Influence of black coatings on pyroelectric detectors," Appl. Opt. 13, 1171-1178 (1974).
    [CrossRef] [PubMed]
  2. D. J. Advena, V. T. Bly, and J. T. Cox, "Deposition and characterization of far-infrared absorbing gold black films," Appl. Opt. 32, 1136-1144 (1993).
    [CrossRef] [PubMed]
  3. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
    [CrossRef]
  4. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003), p. 212.
  5. J. H. Lehman, C. Engtrakul, T. Gennet, and A. C. Dillon, "Single-wall carbon nanotube coating on a pyroelectric detector," Appl. Opt. 44, 483-488 (2005).
    [CrossRef] [PubMed]
  6. J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, "Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector," Infrared Phys. Technol. (to be published).
  7. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997).
    [CrossRef]
  8. X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
    [CrossRef]
  9. A. Borghesi and G. Guizzetti, "Graphite (C)," in Handbook of Optical Constants of Solids II, E. Palik, ed. (Academic, 1991), pp. 449-460.
  10. A. M. Glass, "Ferroelectric Sr1-xBaxNb2O6 as a fast and sensitive detector of infrared radiation," Appl. Phys. Lett. 13, 147-148 (1968).
    [CrossRef]
  11. R. L. Byer and C. B. Roundy, "Pyroelectric coefficient direct measurement technique and application to a nsec response time detector," Ferroelectrics 3, 333-338 (1972).
    [CrossRef]
  12. K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric lithium niobate. 2. Preparation of single domain crystals," J. Phys. Chem. Solids 27, 989-996 (1966).
    [CrossRef]
  13. W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements, F. Grum and C. J. Bartleson, eds. (Academic, 1983), p. 130.
  14. J. H. Lehman, A. M. Radojevic, R. M. Osgood, Jr., and M. Levy, "Fabrication and evaluation of a freestanding pyroelectric detector made from single-crystal LiNbO3 film," Opt. Lett. 25, 1657-1659 (2000).
    [CrossRef]
  15. E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
    [CrossRef]
  16. E. Theocharous, J. Ishii, and N. P. Fox, "A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications," Infrared Sci. Technol. 46, 309-322 (2004).
    [CrossRef]
  17. E. Theocharous, J. Ishii, and N. P. Fox, "Absolute linearity measurements on HgCdTe detectors in the infrared," Appl. Opt. 43, 4182-4188 (2004).
    [CrossRef] [PubMed]
  18. E. Theocharous, N. P. Fox, and T. R. Prior, "A comparison of the performance of infrared detectors for radiometric applications," in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE 2815, 56-69 (1996).
    [CrossRef]
  19. N. Nelms and J. Dawson, "Goldblack coating for thermal infrared detectors," Sensors Actuators A 120, 403-407 (2005).
    [CrossRef]

2005 (2)

2004 (2)

E. Theocharous, J. Ishii, and N. P. Fox, "A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications," Infrared Sci. Technol. 46, 309-322 (2004).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, "Absolute linearity measurements on HgCdTe detectors in the infrared," Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

2003 (3)

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
[CrossRef]

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

2000 (1)

1997 (1)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997).
[CrossRef]

1996 (1)

E. Theocharous, N. P. Fox, and T. R. Prior, "A comparison of the performance of infrared detectors for radiometric applications," in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE 2815, 56-69 (1996).
[CrossRef]

1993 (1)

1974 (1)

1972 (1)

R. L. Byer and C. B. Roundy, "Pyroelectric coefficient direct measurement technique and application to a nsec response time detector," Ferroelectrics 3, 333-338 (1972).
[CrossRef]

1968 (1)

A. M. Glass, "Ferroelectric Sr1-xBaxNb2O6 as a fast and sensitive detector of infrared radiation," Appl. Phys. Lett. 13, 147-148 (1968).
[CrossRef]

1966 (1)

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric lithium niobate. 2. Preparation of single domain crystals," J. Phys. Chem. Solids 27, 989-996 (1966).
[CrossRef]

Advena, D. J.

Blevin, W. R.

Bly, V. T.

Borghesi, A.

A. Borghesi and G. Guizzetti, "Graphite (C)," in Handbook of Optical Constants of Solids II, E. Palik, ed. (Academic, 1991), pp. 449-460.

Budde, W.

W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements, F. Grum and C. J. Bartleson, eds. (Academic, 1983), p. 130.

Byer, R. L.

R. L. Byer and C. B. Roundy, "Pyroelectric coefficient direct measurement technique and application to a nsec response time detector," Ferroelectrics 3, 333-338 (1972).
[CrossRef]

Clarke, F. J. J.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
[CrossRef]

Cox, J. T.

Dawson, J.

N. Nelms and J. Dawson, "Goldblack coating for thermal infrared detectors," Sensors Actuators A 120, 403-407 (2005).
[CrossRef]

Deshpande, R.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, "Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector," Infrared Phys. Technol. (to be published).

Dillon, A. C.

J. H. Lehman, C. Engtrakul, T. Gennet, and A. C. Dillon, "Single-wall carbon nanotube coating on a pyroelectric detector," Appl. Opt. 44, 483-488 (2005).
[CrossRef] [PubMed]

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, "Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector," Infrared Phys. Technol. (to be published).

Dresselhaus, G.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003), p. 212.

Dresselhaus, M. S.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003), p. 212.

Engtrakul, C.

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Fan, X. J.

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Fox, N. P.

E. Theocharous, J. Ishii, and N. P. Fox, "A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications," Infrared Sci. Technol. 46, 309-322 (2004).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, "Absolute linearity measurements on HgCdTe detectors in the infrared," Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
[CrossRef]

E. Theocharous, N. P. Fox, and T. R. Prior, "A comparison of the performance of infrared detectors for radiometric applications," in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE 2815, 56-69 (1996).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997).
[CrossRef]

Geist, J.

Gennet, T.

Glass, A. M.

A. M. Glass, "Ferroelectric Sr1-xBaxNb2O6 as a fast and sensitive detector of infrared radiation," Appl. Phys. Lett. 13, 147-148 (1968).
[CrossRef]

Guizzetti, G.

A. Borghesi and G. Guizzetti, "Graphite (C)," in Handbook of Optical Constants of Solids II, E. Palik, ed. (Academic, 1991), pp. 449-460.

Ishii, J.

E. Theocharous, J. Ishii, and N. P. Fox, "Absolute linearity measurements on HgCdTe detectors in the infrared," Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

E. Theocharous, J. Ishii, and N. P. Fox, "A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications," Infrared Sci. Technol. 46, 309-322 (2004).
[CrossRef]

Lehman, J.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Lehman, J. H.

Levinstein, H. J.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric lithium niobate. 2. Preparation of single domain crystals," J. Phys. Chem. Solids 27, 989-996 (1966).
[CrossRef]

Levy, M.

Li, H.

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Loiacono, G. M.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric lithium niobate. 2. Preparation of single domain crystals," J. Phys. Chem. Solids 27, 989-996 (1966).
[CrossRef]

Nassau, K.

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric lithium niobate. 2. Preparation of single domain crystals," J. Phys. Chem. Solids 27, 989-996 (1966).
[CrossRef]

Nelms, N.

N. Nelms and J. Dawson, "Goldblack coating for thermal infrared detectors," Sensors Actuators A 120, 403-407 (2005).
[CrossRef]

Osgood, R. M.

Pan, L. S.

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Pannel, C.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997).
[CrossRef]

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997).
[CrossRef]

Prior, T. R.

E. Theocharous, N. P. Fox, and T. R. Prior, "A comparison of the performance of infrared detectors for radiometric applications," in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE 2815, 56-69 (1996).
[CrossRef]

Radojevic, A. M.

Rice, P.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, "Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector," Infrared Phys. Technol. (to be published).

Rodgers, L. J.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
[CrossRef]

Roundy, C. B.

R. L. Byer and C. B. Roundy, "Pyroelectric coefficient direct measurement technique and application to a nsec response time detector," Ferroelectrics 3, 333-338 (1972).
[CrossRef]

Saito, R.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003), p. 212.

Theocharous, E.

E. Theocharous, J. Ishii, and N. P. Fox, "A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications," Infrared Sci. Technol. 46, 309-322 (2004).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, "Absolute linearity measurements on HgCdTe detectors in the infrared," Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
[CrossRef]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

E. Theocharous, N. P. Fox, and T. R. Prior, "A comparison of the performance of infrared detectors for radiometric applications," in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE 2815, 56-69 (1996).
[CrossRef]

Wu, X. H.

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Xu, D.

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Zhang, C. X.

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. M. Glass, "Ferroelectric Sr1-xBaxNb2O6 as a fast and sensitive detector of infrared radiation," Appl. Phys. Lett. 13, 147-148 (1968).
[CrossRef]

Ferroelectrics (1)

R. L. Byer and C. B. Roundy, "Pyroelectric coefficient direct measurement technique and application to a nsec response time detector," Ferroelectrics 3, 333-338 (1972).
[CrossRef]

Infrared Phys. Technol. (1)

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, "Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector," Infrared Phys. Technol. (to be published).

Infrared Sci. Technol. (1)

E. Theocharous, J. Ishii, and N. P. Fox, "A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications," Infrared Sci. Technol. 46, 309-322 (2004).
[CrossRef]

J. Phys. Chem. Solids (1)

K. Nassau, H. J. Levinstein, and G. M. Loiacono, "Ferroelectric lithium niobate. 2. Preparation of single domain crystals," J. Phys. Chem. Solids 27, 989-996 (1966).
[CrossRef]

Meas. Sci. Technol. (1)

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, "Gold-black coatings for freestanding pyroelectric detectors," Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Nanotechnology (1)

X. H. Wu, L. S. Pan, X. J. Fan, D. Xu, H. Li, and C. X. Zhang, "A semi-analytic method for studying optical properties of aligned carbon nanotubes," Nanotechnology 14, 1180-1186 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, "Effective medium theory of the optical properties of aligned carbon nanotubes," Phys. Rev. Lett. 78, 4289-4292 (1997).
[CrossRef]

Proc. SPIE (2)

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, "Latest techniques at NPL for the characterisation of infrared detectors and materials," in Materials for Infrared Detectors III, R. E. Longshore and S. Sivananthan, eds., Proc. SPIE 5209, 228-239 (2003).
[CrossRef]

E. Theocharous, N. P. Fox, and T. R. Prior, "A comparison of the performance of infrared detectors for radiometric applications," in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE 2815, 56-69 (1996).
[CrossRef]

Sensors Actuators A (1)

N. Nelms and J. Dawson, "Goldblack coating for thermal infrared detectors," Sensors Actuators A 120, 403-407 (2005).
[CrossRef]

Other (3)

W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements, F. Grum and C. J. Bartleson, eds. (Academic, 1983), p. 130.

A. Borghesi and G. Guizzetti, "Graphite (C)," in Handbook of Optical Constants of Solids II, E. Palik, ed. (Academic, 1991), pp. 449-460.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003), p. 212.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scanning-electron microscope image of the MWNT coating. Note that the tubes are not perfectly aligned, as idealized in the MGT model.

Fig. 2
Fig. 2

Calculation of detector absorption efficiency based on Eq. (1).

Fig. 3
Fig. 3

Relative spectral responsivity of the MWNT pyroelectric detector normalized at 1. 6 µm . Error bars represent the 1 σ uncertainty of the measurements.

Fig. 4
Fig. 4

Normalized output of the MWNT pyroelectric detector while its temperature (the lighter curve) was decreased from 20 °C to 18 °C and then increased to 22 °C.

Fig. 5
Fig. 5

Spatial uniformity of the response of the MWNT pyroelectric detector.

Fig. 6
Fig. 6

Linearity characteristics of the MWNT pyroelectric detector. Error bars represent the standard deviation of eight measurements of the linearity factor at each value of radiant power.

Fig. 7
Fig. 7

Normalized response of the MWNT pyroelectric detector during 48 h.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε p = ε ( ω ) + Δ + f [ ε ( ω ) Δ ] ε ( ω ) + Δ f [ ε ( ω ) Δ ] ,
f ( π r tube 2 ) n tubes Area detector ,
Δ = [ ε ( ω ) / ε ( ω ) ] 1 / 2 .

Metrics