Abstract

We propose and demonstrate a new technique for measuring the temporal variations of the surface slope of an object. This real-time shearometric arrangement takes advantage of the dynamic properties of holograms in photorefractive crystals. The accuracy of the measurements should make this technique suitable for real-time structural intensity determinations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Huignard and J. P. Herriau, "Real-time double-exposure interferometry with Bi12GeO20 crystals in transverse electrooptic configuration," Appl. Opt. 16, 1807-1809 (1977).
    [CrossRef] [PubMed]
  2. T. Sato, T. Hatsusawa, and O. Ikeda, "Dynamic interferometric observation of differential movement," Appl. Opt. 22, 3895-3897 (1983).
    [CrossRef] [PubMed]
  3. A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
    [CrossRef]
  4. A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).
  5. R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
    [CrossRef]
  6. H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995).
    [CrossRef]
  7. L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
    [CrossRef]
  8. F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998).
    [CrossRef]
  9. Ph. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1733 (1997).
    [CrossRef]
  10. M. P. Georges and P. C. Lemaire, "Real-time stroboscopic holographic enhancement using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-247 (1998).
    [CrossRef]
  11. J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments," J. Phys. E: Sci. Instrum. 3, 1107-1110 (1973).
    [CrossRef]
  12. Y. Y. Hung, "Shearography: a new optical method for strain measurement and nondestructive testing," Opt. Eng. 21, 391-395 (1982).
  13. N. K. Mohan and P. Rastogi, "Recent development in digital speckle pattern interferometry," Opt. Lasers Eng. 40, 339-444 (2003).
    [CrossRef]
  14. D. U. Noiseux, "Measurement of power flow in uniform beams and plates," J. Acoust. Soc. Am. 47, 238-247 (1970).
    [CrossRef]
  15. G. Pavic, "Measurement of structure borne wave intensity, part I: Formulation of the methods," J. Sound Vib. 49, 221-230 (1976).
    [CrossRef]
  16. J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
    [CrossRef]
  17. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, 1991).
  18. J. P. Huignard and A. Marrakchi, "Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis," Opt. Lett. 6, 622-624 (1981).
    [CrossRef] [PubMed]
  19. Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995).
    [CrossRef]
  20. J. C. Launay, Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux I, France (personal communication, 1998).
  21. N. A. Korneev and S. I. Stepanov, "Dynamic self-diffraction of laterally vibrating speckle patterns in photorefractive crystals," Optik 91, 61-65 (1992).
  22. A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
    [CrossRef]

2003 (1)

N. K. Mohan and P. Rastogi, "Recent development in digital speckle pattern interferometry," Opt. Lasers Eng. 40, 339-444 (2003).
[CrossRef]

2002 (1)

J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
[CrossRef]

1999 (1)

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

1998 (2)

M. P. Georges and P. C. Lemaire, "Real-time stroboscopic holographic enhancement using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-247 (1998).
[CrossRef]

F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998).
[CrossRef]

1997 (2)

Ph. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1733 (1997).
[CrossRef]

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

1995 (2)

H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995).
[CrossRef]

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995).
[CrossRef]

1994 (1)

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

1992 (1)

N. A. Korneev and S. I. Stepanov, "Dynamic self-diffraction of laterally vibrating speckle patterns in photorefractive crystals," Optik 91, 61-65 (1992).

1989 (1)

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).

1985 (1)

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

1983 (1)

1982 (1)

Y. Y. Hung, "Shearography: a new optical method for strain measurement and nondestructive testing," Opt. Eng. 21, 391-395 (1982).

1981 (1)

1977 (1)

1976 (1)

G. Pavic, "Measurement of structure borne wave intensity, part I: Formulation of the methods," J. Sound Vib. 49, 221-230 (1976).
[CrossRef]

1973 (1)

J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments," J. Phys. E: Sci. Instrum. 3, 1107-1110 (1973).
[CrossRef]

1970 (1)

D. U. Noiseux, "Measurement of power flow in uniform beams and plates," J. Acoust. Soc. Am. 47, 238-247 (1970).
[CrossRef]

Ashihara, S.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Black, T. D.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Blouin, A.

Butters, J. N.

J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments," J. Phys. E: Sci. Instrum. 3, 1107-1110 (1973).
[CrossRef]

Carniel, X.

J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
[CrossRef]

Chalvidant, V.

J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
[CrossRef]

Chambard, J. P.

J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
[CrossRef]

de Montmorillon, L. A.

Ph. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1733 (1997).
[CrossRef]

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995).
[CrossRef]

Delaye, Ph.

Ph. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1733 (1997).
[CrossRef]

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995).
[CrossRef]

Drolet, D.

Georges, M. P.

M. P. Georges and P. C. Lemaire, "Real-time stroboscopic holographic enhancement using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-247 (1998).
[CrossRef]

Hafiz, A.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Haji-Sheikh, A.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Hatsusawa, T.

Herriau, J. P.

Huignard, J. P.

Hung, Y. Y.

Y. Y. Hung, "Shearography: a new optical method for strain measurement and nondestructive testing," Opt. Eng. 21, 391-395 (1982).

Ikeda, O.

Kamshilin, A. A.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, 1991).

Konecni, S.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Korneev, N. A.

N. A. Korneev and S. I. Stepanov, "Dynamic self-diffraction of laterally vibrating speckle patterns in photorefractive crystals," Optik 91, 61-65 (1992).

Kuroda, K.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Labrunie, L.

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

Launay, J. C.

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

J. C. Launay, Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux I, France (personal communication, 1998).

Leendertz, J. A.

J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments," J. Phys. E: Sci. Instrum. 3, 1107-1110 (1973).
[CrossRef]

Leidenbach, S.

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

Lemaire, P. C.

M. P. Georges and P. C. Lemaire, "Real-time stroboscopic holographic enhancement using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-247 (1998).
[CrossRef]

Lida, Y.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Magnusson, R.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Marrakchi, A.

H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995).
[CrossRef]

J. P. Huignard and A. Marrakchi, "Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis," Opt. Lett. 6, 622-624 (1981).
[CrossRef] [PubMed]

Mohan, N. K.

N. K. Mohan and P. Rastogi, "Recent development in digital speckle pattern interferometry," Opt. Lasers Eng. 40, 339-444 (2003).
[CrossRef]

Mokrushina, E. V.

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).

Monchalin, J. P.

Nazhestkina, N. I.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Noiseux, D. U.

D. U. Noiseux, "Measurement of power flow in uniform beams and plates," J. Acoust. Soc. Am. 47, 238-247 (1970).
[CrossRef]

Paivasaari, K.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Pascal, J.-C.

J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
[CrossRef]

Pauliat, G.

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

Pavic, G.

G. Pavic, "Measurement of structure borne wave intensity, part I: Formulation of the methods," J. Sound Vib. 49, 221-230 (1976).
[CrossRef]

Petersen, P. M.

H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995).
[CrossRef]

Petrov, M. P.

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, 1991).

Prokofiev, V. V.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Rastogi, P.

N. K. Mohan and P. Rastogi, "Recent development in digital speckle pattern interferometry," Opt. Lasers Eng. 40, 339-444 (2003).
[CrossRef]

Rickermann, F.

F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998).
[CrossRef]

Riehemann, S.

F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998).
[CrossRef]

Rohleder, H.

H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995).
[CrossRef]

Roosen, G.

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

Ph. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1733 (1997).
[CrossRef]

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995).
[CrossRef]

Sato, T.

Shimura, T.

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

Stepanov, S. I.

N. A. Korneev and S. I. Stepanov, "Dynamic self-diffraction of laterally vibrating speckle patterns in photorefractive crystals," Optik 91, 61-65 (1992).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, 1991).

Tello, L. N.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

von Bally, G.

F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998).
[CrossRef]

Wang, X.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Wilson, D.

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999).
[CrossRef]

J. Acoust. Soc. Am. (1)

D. U. Noiseux, "Measurement of power flow in uniform beams and plates," J. Acoust. Soc. Am. 47, 238-247 (1970).
[CrossRef]

J. Appl. Phys. (1)

H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. E: Sci. Instrum. (1)

J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments," J. Phys. E: Sci. Instrum. 3, 1107-1110 (1973).
[CrossRef]

J. Sound Vib. (1)

G. Pavic, "Measurement of structure borne wave intensity, part I: Formulation of the methods," J. Sound Vib. 49, 221-230 (1976).
[CrossRef]

Opt. Commun. (5)

Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995).
[CrossRef]

M. P. Georges and P. C. Lemaire, "Real-time stroboscopic holographic enhancement using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-247 (1998).
[CrossRef]

L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997).
[CrossRef]

F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998).
[CrossRef]

A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985).
[CrossRef]

Opt. Eng. (3)

A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).

R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994).
[CrossRef]

Y. Y. Hung, "Shearography: a new optical method for strain measurement and nondestructive testing," Opt. Eng. 21, 391-395 (1982).

Opt. Lasers Eng. (2)

N. K. Mohan and P. Rastogi, "Recent development in digital speckle pattern interferometry," Opt. Lasers Eng. 40, 339-444 (2003).
[CrossRef]

J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002).
[CrossRef]

Opt. Lett. (1)

Optik (1)

N. A. Korneev and S. I. Stepanov, "Dynamic self-diffraction of laterally vibrating speckle patterns in photorefractive crystals," Optik 91, 61-65 (1992).

Other (2)

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, 1991).

J. C. Launay, Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux I, France (personal communication, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of a real-time dynamic shearing interferometer. For the sake of clarity, only the interfering beams for two points are represented, and the laser beam illuminating the object is not shown. WP, wedged plate.

Fig. 2
Fig. 2

Experimental setup used for the first demonstration. PBS, polarizing beam splitter; BGO, Bi12GeO20; P, polarizer.

Fig. 3
Fig. 3

Sizes of the apertures in millimeters; the apertures are shaded.

Fig. 4
Fig. 4

The ac part of the signal detected by the photodiode (solid curve, before averaging; dotted curve, after averaging) compared with the sawtooth displacement of the piezoelectric transducer (thick dashed curve).

Fig. 5
Fig. 5

Comparison of the displacement (dotted curve) computed from the signal detected by the photodiode (solid curve) with the known sawtooth displacement of the piezoelectric transducer (thick dashed curve).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( x ) = A 1 ( x ) exp [ i φ ( x , t ) ] exp ( i k 1 r ) ,
E 2 ( x + δ x ) = A 2 ( x + δ x ) exp [ i φ ( x + δ x , t ) ] exp ( i k 2 r ) ,
φ ( x , t ) = 4 π λ w ( x , t ) ,
Δ φ ( x , t ) = φ ( x + δ x , t ) φ ( x , t ) 4 π λ w ( x , t ) x δ x ,
δ n = ξ C A 1 ( x ) A 2 * ( x + δ x ) | A 1 | 2 + | A 2 | 2 exp [ i ( k H x + ψ ) ] ,
C exp ( t / τ ) 0 t exp [ iΔφ ( x , t ) ] exp ( t / τ ) d t τ ,
E ( x ) = A 1 ( x ) exp { i [ k 1 · r + φ ( x , t ) ] }
E d ( x + δx ) = βCA 1 ( x ) exp { i [ k 1 · r + φ ( x + δx , t ) ] } .
E ( x + δ x ) = A 2 ( x + δ x ) exp { i [ k 2 r + φ ( x + δ x , t ) ] } ,
E d ( x ) = β C A 2 ( x + δ x ) exp { i [ k 2 r + φ ( x , t ) ] } .
cos [ Δ φ ( x , t ) ] .
I ( x , δ x ) = | A 1 ( x ) | 2 { cos 2 Θ + β 2 C 2 sin 2 Θ + 2 β C sin Θ cos Θ sin [ Δ φ ( x , t ) ] } + | A 2 ( x + δ x ) | 2 { cos 2 Θ + β 2 C 2 sin 2 Θ + 2 β C sin Θ cos Θ sin [ Δ φ ( x , t ) ] } .
I ( x , δ x ) = I 0 { 1 + m C sin [ Δ φ ( x , t ) ] } .

Metrics