Abstract

We have developed software with an interactive user interface that can be used to generate phase holograms for use with spatial light modulators. The program utilizes different hologram design techniques, allowing the user to select an appropriate algorithm. The program can be used to generate multiple beams and can be used for beam steering. We see a major application of the program to be in optical tweezers to control the position, number, and type of optical traps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
    [CrossRef] [PubMed]
  3. S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams," Electron. Lett. 27, 1831-1832 (1991).
    [CrossRef]
  4. J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).
  5. S. Sato and H. Inaba, "Optical trapping and manipulation of microscopic particles and biological cells by laser beams," Opt. Quantum Electron. 28, 1-16 (1996).
    [CrossRef]
  6. M. Edidin, S. C. Kuo, and P. Sheetz, "Lateral movements of membrane glycoproteins restricted to dynamic cytoplasmic barriers," Science 29, 1379-1382 (1991).
    [CrossRef]
  7. A. T. O'Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the de-coupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
    [CrossRef]
  8. E. Dufresne and D. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
    [CrossRef]
  9. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  10. Arryx Inc., BioRyx 200, http://www.arryx.com/.
  11. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  12. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003).
    [CrossRef]
  13. J. Leach, G. Sinclair, P. Jordan, M. J. Padgett, J. Courtial, J. Cooper, and Z. J. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12, 220-226 (2004).
    [CrossRef] [PubMed]
  14. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  15. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, "Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping," Opt. Express 12, 1665-1670 (2004).
    [CrossRef] [PubMed]
  16. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, "Synthesis of digital holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987).
    [CrossRef] [PubMed]
  17. Z. J. Laczik, "3D beam shaping using diffractive optical elements," in Laser Beam Shaping III, F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds., Proc. SPIE 4770, 104-111 (2002).
    [CrossRef]
  18. X. Xun, X. Chang, and R. W. Cohn, "System for demonstrating arbitrary multispot beam steering from spatial light modulators," Opt. Express 12, 260-268 (2004).
    [CrossRef] [PubMed]
  19. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
    [CrossRef]
  20. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  21. R. Piestun and J. Shamir, "Generalized propagation-invariant wave fields," J. Opt. Soc. Am. A 15, 3039-3044 (1998).
    [CrossRef]

2004 (4)

2003 (1)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003).
[CrossRef]

2002 (2)

Z. J. Laczik, "3D beam shaping using diffractive optical elements," in Laser Beam Shaping III, F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds., Proc. SPIE 4770, 104-111 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

2000 (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

A. T. O'Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the de-coupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

1999 (1)

1998 (2)

E. Dufresne and D. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

R. Piestun and J. Shamir, "Generalized propagation-invariant wave fields," J. Opt. Soc. Am. A 15, 3039-3044 (1998).
[CrossRef]

1996 (1)

S. Sato and H. Inaba, "Optical trapping and manipulation of microscopic particles and biological cells by laser beams," Opt. Quantum Electron. 28, 1-16 (1996).
[CrossRef]

1995 (1)

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

1991 (2)

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

M. Edidin, S. C. Kuo, and P. Sheetz, "Lateral movements of membrane glycoproteins restricted to dynamic cytoplasmic barriers," Science 29, 1379-1382 (1991).
[CrossRef]

1987 (2)

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, "Synthesis of digital holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987).
[CrossRef] [PubMed]

1986 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Allebach, J. P.

Ashkin, A.

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003).
[CrossRef]

Bjorkholm, J. E.

Burns, J. E.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

Chang, X.

Chu, S.

Cohn, R. W.

Cooper, J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

J. Leach, G. Sinclair, P. Jordan, M. J. Padgett, J. Courtial, J. Cooper, and Z. J. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12, 220-226 (2004).
[CrossRef] [PubMed]

Courtial, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dufresne, E.

E. Dufresne and D. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Dziedzic, J. M.

Edidin, M.

M. Edidin, S. C. Kuo, and P. Sheetz, "Lateral movements of membrane glycoproteins restricted to dynamic cytoplasmic barriers," Science 29, 1379-1382 (1991).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Gibson, G.

Grier, D.

E. Dufresne and D. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Inaba, H.

S. Sato and H. Inaba, "Optical trapping and manipulation of microscopic particles and biological cells by laser beams," Opt. Quantum Electron. 28, 1-16 (1996).
[CrossRef]

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Ishigure, M.

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Jordan, P.

Kendrick-Jones, J.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Kuo, S. C.

M. Edidin, S. C. Kuo, and P. Sheetz, "Lateral movements of membrane glycoproteins restricted to dynamic cytoplasmic barriers," Science 29, 1379-1382 (1991).
[CrossRef]

Laczik, Z. J.

Leach, J.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Molloy, J. E.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

O'Neil, A. T.

A. T. O'Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the de-coupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Padgett, M. J.

J. Leach, G. Sinclair, P. Jordan, M. J. Padgett, J. Courtial, J. Cooper, and Z. J. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12, 220-226 (2004).
[CrossRef] [PubMed]

G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, "Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping," Opt. Express 12, 1665-1670 (2004).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003).
[CrossRef]

A. T. O'Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the de-coupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Piestun, R.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Sato, S.

S. Sato and H. Inaba, "Optical trapping and manipulation of microscopic particles and biological cells by laser beams," Opt. Quantum Electron. 28, 1-16 (1996).
[CrossRef]

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Seldowitz, M. A.

Shamir, J.

Sheetz, P.

M. Edidin, S. C. Kuo, and P. Sheetz, "Lateral movements of membrane glycoproteins restricted to dynamic cytoplasmic barriers," Science 29, 1379-1382 (1991).
[CrossRef]

Sinclair, G.

Sparrow, J. C.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

Sweeney, D. W.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Tregear, R. T.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

Wagemann, E. U.

White, D. C. S.

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

Xun, X.

Yao, E.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, "Optically controlled three-dimensional rotation of microscopic objects," Appl. Phys. Lett. 82, 829-831 (2003).
[CrossRef]

Biophys. J. (1)

J. E. Molloy, J. E. Burns, J. C. Sparrow, R. T. Tregear, J. Kendrick-Jones, and D. C. S. White, "Single-molecule mechanics of heavy-meromyosin and s1 interacting with rabbit or drosophila actins using optical tweezers," Biophys. J. 68, S298-S305 (1995).

Electron. Lett. (1)

S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams," Electron. Lett. 27, 1831-1832 (1991).
[CrossRef]

J. Mod. Opt. (1)

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

A. T. O'Neil and M. J. Padgett, "Three-dimensional optical confinement of micron-sized metal particles and the de-coupling of the spin and orbital angular momentum within an optical spanner," Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Sato and H. Inaba, "Optical trapping and manipulation of microscopic particles and biological cells by laser beams," Opt. Quantum Electron. 28, 1-16 (1996).
[CrossRef]

Optik (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Proc. SPIE (1)

Z. J. Laczik, "3D beam shaping using diffractive optical elements," in Laser Beam Shaping III, F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds., Proc. SPIE 4770, 104-111 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

E. Dufresne and D. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998).
[CrossRef]

Science (2)

M. Edidin, S. C. Kuo, and P. Sheetz, "Lateral movements of membrane glycoproteins restricted to dynamic cytoplasmic barriers," Science 29, 1379-1382 (1991).
[CrossRef]

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

Other (1)

Arryx Inc., BioRyx 200, http://www.arryx.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a holographic optical tweezers system. The plane of the SLM is imaged into the pupil plane of the microscope objective.

Fig. 2
Fig. 2

User interface for the software. The circular markers indicate the trap positions. These can be moved with a mouse or joystick.

Fig. 3
Fig. 3

Fourier relationship between the plane of the hologram and the image space of the objective lens. One can easily move between the two planes by using Fourier transforms (FT) and inverse Fourier transforms ( FT - 1 ) .

Fig. 4
Fig. 4

Phase required for lateral and axial shifts.

Fig. 5
Fig. 5

Using our software to generate a 3 × 3 × 3 array of 1 μm silica spheres from a two-dimensional grid of 3 × 9 trapped spheres.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

u = a exp ( i ϕ ) .
u i ( x i , y i ) = { u h ( x h , y h ) } .
ϕ prism ( x h , y h ) = a ( Δ x x h + Δ y y h ) ,
ϕ lens ( x h , y h ) = k 2 f ( x h 2 + y h 2 ) ,
ϕ h = ( ϕ prism + ϕ lens ) mod 2 π .
ϕ h = arg ( n = 1 N u h , n ) .
u h , 1 = exp ( i ϕ r ) .
u i , l = F { u h , l } .
ϕ i , l = arg ( u i , l ) ,
u i , l = I t exp ( i ϕ i , l ) .
u h , l = F - 1 { u i , l } .
ϕ h , l + 1 = arg ( u h , l ) ,
u h , l + 1 = exp ( i ϕ h , l + 1 ) .
ϕ h = arg ( u h ) .
u h , l ( x h , y h ) = exp { i arg [ p = 1 N k h , p ( x h , y h ) ] } ,
u i , l , p = d x h d y h u h , l ( x h , y h ) k h , p * ( x h , y h ) .
u h , l + 1 ( x h , y h ) = exp ( i arg { p = 1 N k h , p ( x h , y h ) exp [ i arg ( u i , l , p ) ] } ) .
ε = n = 1 N u t , n u i , n .
u i ( x i , y i ) = F { u h } = u h ( x h , y h ) exp { i [ k f ( x h 2 + y h 2 ) + a ( x h x i + y h y i ) ] } d x h d y h .
u i ( x i , y i ) = p = 1 M x q = 1 M y u i , p , q ( x i , y i ) ,

Metrics