Abstract

We first briefly review the state of the art of digital in-line holographic microscopy (DIHM) with numerical reconstruction and then discuss some technical issues, such as lateral and depth resolution, depth of field, twin image, four-dimensional tracking, and reconstruction algorithm. We then present a host of examples from microfluidics and biology of tracking the motion of spheres, algae, and bacteria. Finally, we introduce an underwater version of DIHM that is suitable for in situ studies in an ocean environment that show the motion of various plankton species.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
  2. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962).
  3. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
  4. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffused illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301.
  5. P. Hariharan, Optical Holography (Cambridge U. Press, 1996).
  6. T. Kreis, Holographic Interferometry (Akademie Verlag, 1996).
  7. Y. Aoki, "Optical and numerical reconstruction of images from sound-wave holograms," IEEE Trans. Acoust. Speech AU-18, 258-267 (1970).
  8. M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).
  9. T. H. Demetrakopoulos and R. Mittra, "Digital and optical reconstruction of images from suboptical diffraction patterns," Appl. Opt. 13, 665-670 (1974).
  10. L. Onural and P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).
  11. G. Liu and P. D. Scott, "Phase retrieval and twin-image elemination for in-line Fresnel holograms," J. Opt. Soc. Am. A 4, 159-165 (1987).
  12. L. Onural and M. T. Oezgen, "Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis," J. Opt. Soc. Am. A 9, 252-260 (1992).
  13. H.-W. Fink, "Point source for electrons and ions," IBM J. Res. Dev. 30, 460-463 (1986).
  14. H.-W. Fink, "Point source for electrons and ions," Phys. Scr. 38, 260-263 (1988).
  15. W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989).
    [CrossRef]
  16. H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990).
    [CrossRef]
  17. H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
    [CrossRef]
  18. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
    [CrossRef]
  19. H. J. Kreuzer and R. P. Pawlitzek, LEEPS, Version 1.2: a software package for the simulation and reconstruction of low energy electron point source images and other holograms, (Helix Science Applications, Halifax, Nova Scotia, Canada, 1993-1998).
  20. S. Horch and R. Morin, "Field emission from atomic size sources," J. Appl. Phys. 74, 3652-3657 (1993).
    [CrossRef]
  21. H.-W. Fink, H. Schmid, and H. J. Kreuzer, "State of the art of low-energy electron holography," in Electron Holography, A.Tonomura, L.F.Allard, D.C.Pozzi, D.C.Joy, and Y.A.Ono, eds. (Elsevier Science B.V., 1995).
  22. H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, "Electron holography of individual DNA molecules," J. Opt. Soc. Am. A 14, 2168-2172 (1997).
  23. A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
    [CrossRef]
  24. H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995).
    [CrossRef]
  25. H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).
  26. H. J. Kreuzer, "Low energy electron point source microscopy," Micron 26, 503-509 (1995).
    [CrossRef]
  27. H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
    [CrossRef]
  28. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
    [CrossRef]
  29. M. K. Kim, "Wavelength-scanning digital interference holography for optical sectioning imaging," Opt. Lett. 24, 1693-1695 (1999).
  30. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
  31. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998).
  32. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
  33. T.-C. Poon, "Recent progress in optical scanning holography," J. Holography Speckle 1, 6-25 (2004).
    [CrossRef]
  34. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).
  35. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).
  36. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000).
  37. J. Swoger, M. Martinez-Corral, J. Huisken, and E. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002).
  38. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
  39. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).
  40. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
    [CrossRef]
  41. H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001).
    [CrossRef]
  42. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).
  43. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
    [CrossRef]
  44. N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).
  45. W. Xu, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Optik (to be published).
  46. D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1949).
  47. J. J. Barton, "Photoelectron holography," Phys. Rev. Lett. 61, 1356-1359 (1988).
    [CrossRef]
  48. K. Heinz, U. Starke, and J. Bernardt, "Surface holography with LEED electrons," Prog. Surf. Sci. 64, 163-178 (2000).
    [CrossRef]
  49. U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  50. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (translated from Russian by D. Parsons, Consultants Bureau, New York, 1989).
  51. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
  52. L. Rayleigh, Collected Papers (Cambridge U. Press, 1902), pp. 3, 84.
  53. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993).
  54. T. Asakura, "Resolution of two unequally bright points with partially coherent light," Nouv. Rev. Opt. 5, 169-177 (1974).
    [CrossRef]
  55. J. J. Barton, "Removing multiple scattering and twin images from hologaphic images," Phys. Rev. Lett. 67, 3106-3109 (1991).
    [CrossRef]
  56. J. B. DeVelis, G. Parrent, and B. J. Thompson, "Image reconstruction with Fraunhofer holograms," J. Opt. Soc. Am. 56, 423-1427 (1996).
  57. K. Doh, T.-C. Poon, and G. Indebetouw, "Twin-image noise in optical scanning holography," Opt. Eng. 35, 1550-1555 (1996).
  58. P. Sun and J.-H. Xie, "Method for reduction of background artifacts of images in scanning holography with a Fresnel-zone-plate coded aperture," Appl. Opt. 43, 4214-4218 (2004).
    [CrossRef]
  59. S.-G. Kim, B. Lee, and E.-S. Kim, "Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram," Appl. Opt. 36, 4784-4791 (1997).
  60. T.-C. Poon, T. Kim, G. Indebetouw, M. H. Wu, K. Shinoda, and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett. 25, 215-217 (2000).
  61. Y. Takaki, H. Kawai, and H. Ohzu, "Hybrid holographic microscopy free of conjugate and zero-order images," Appl. Opt. 38, 4990-4996 (1999).
  62. P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001).
    [CrossRef]
  63. J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).
  64. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
    [CrossRef]
  65. A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
    [CrossRef]

2005 (1)

2004 (2)

2003 (3)

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
[CrossRef]

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).

2002 (3)

2001 (6)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
[CrossRef]

H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001).
[CrossRef]

P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001).
[CrossRef]

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).

2000 (3)

1999 (4)

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
[CrossRef]

Y. Takaki, H. Kawai, and H. Ohzu, "Hybrid holographic microscopy free of conjugate and zero-order images," Appl. Opt. 38, 4990-4996 (1999).

M. K. Kim, "Wavelength-scanning digital interference holography for optical sectioning imaging," Opt. Lett. 24, 1693-1695 (1999).

1998 (2)

T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998).

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

1997 (4)

1996 (3)

J. B. DeVelis, G. Parrent, and B. J. Thompson, "Image reconstruction with Fraunhofer holograms," J. Opt. Soc. Am. 56, 423-1427 (1996).

J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).

K. Doh, T.-C. Poon, and G. Indebetouw, "Twin-image noise in optical scanning holography," Opt. Eng. 35, 1550-1555 (1996).

1995 (4)

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).

H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995).
[CrossRef]

H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).

H. J. Kreuzer, "Low energy electron point source microscopy," Micron 26, 503-509 (1995).
[CrossRef]

1993 (1)

S. Horch and R. Morin, "Field emission from atomic size sources," J. Appl. Phys. 74, 3652-3657 (1993).
[CrossRef]

1992 (2)

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

L. Onural and M. T. Oezgen, "Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis," J. Opt. Soc. Am. A 9, 252-260 (1992).

1991 (2)

H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
[CrossRef]

J. J. Barton, "Removing multiple scattering and twin images from hologaphic images," Phys. Rev. Lett. 67, 3106-3109 (1991).
[CrossRef]

1990 (1)

H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990).
[CrossRef]

1989 (1)

W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989).
[CrossRef]

1988 (2)

H.-W. Fink, "Point source for electrons and ions," Phys. Scr. 38, 260-263 (1988).

J. J. Barton, "Photoelectron holography," Phys. Rev. Lett. 61, 1356-1359 (1988).
[CrossRef]

1987 (2)

L. Onural and P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).

G. Liu and P. D. Scott, "Phase retrieval and twin-image elemination for in-line Fresnel holograms," J. Opt. Soc. Am. A 4, 159-165 (1987).

1986 (1)

H.-W. Fink, "Point source for electrons and ions," IBM J. Res. Dev. 30, 460-463 (1986).

1974 (2)

T. Asakura, "Resolution of two unequally bright points with partially coherent light," Nouv. Rev. Opt. 5, 169-177 (1974).
[CrossRef]

T. H. Demetrakopoulos and R. Mittra, "Digital and optical reconstruction of images from suboptical diffraction patterns," Appl. Opt. 13, 665-670 (1974).

1972 (1)

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).

1970 (1)

Y. Aoki, "Optical and numerical reconstruction of images from sound-wave holograms," IEEE Trans. Acoust. Speech AU-18, 258-267 (1970).

1963 (1)

1962 (1)

1949 (1)

D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1949).

1948 (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).

Aoki, Y.

Y. Aoki, "Optical and numerical reconstruction of images from sound-wave holograms," IEEE Trans. Acoust. Speech AU-18, 258-267 (1970).

Asakura, T.

T. Asakura, "Resolution of two unequally bright points with partially coherent light," Nouv. Rev. Opt. 5, 169-177 (1974).
[CrossRef]

Austin, R. H.

J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).

Barton, J. J.

J. J. Barton, "Removing multiple scattering and twin images from hologaphic images," Phys. Rev. Lett. 67, 3106-3109 (1991).
[CrossRef]

J. J. Barton, "Photoelectron holography," Phys. Rev. Lett. 61, 1356-1359 (1988).
[CrossRef]

Becker, F. F.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

Bernardt, J.

K. Heinz, U. Starke, and J. Bernardt, "Surface holography with LEED electrons," Prog. Surf. Sci. 64, 163-178 (2000).
[CrossRef]

Blagrave, K.

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
[CrossRef]

Bonev, S.

H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993).

Brody, J. P.

J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).

Cemballa, A. D.

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

Colomb, T.

Cuche, E.

Demetrakopoulos, T. H.

Depeursinge, C.

DeVelis, J. B.

Doh, K.

K. Doh, T.-C. Poon, and G. Indebetouw, "Twin-image noise in optical scanning holography," Opt. Eng. 35, 1550-1555 (1996).

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).

Emery, Y.

Ermantraut, E.

Fink, H.-W.

H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, "Electron holography of individual DNA molecules," J. Opt. Soc. Am. A 14, 2168-2172 (1997).

H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995).
[CrossRef]

H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
[CrossRef]

H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990).
[CrossRef]

W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989).
[CrossRef]

H.-W. Fink, "Point source for electrons and ions," Phys. Scr. 38, 260-263 (1988).

H.-W. Fink, "Point source for electrons and ions," IBM J. Res. Dev. 30, 460-463 (1986).

H.-W. Fink, H. Schmid, and H. J. Kreuzer, "State of the art of low-energy electron holography," in Electron Holography, A.Tonomura, L.F.Allard, D.C.Pozzi, D.C.Joy, and Y.A.Ono, eds. (Elsevier Science B.V., 1995).

Gabor, D.

D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1949).

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).

Gascoyne, P. R. C.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

Goldstein, R. E.

J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).

Gölzhäuser, A.

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

Grunze, M.

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

Hariharan, P.

P. Hariharan, Optical Holography (Cambridge U. Press, 1996).

Hatch, A.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Hawkins, K. R.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Heinz, K.

K. Heinz, U. Starke, and J. Bernardt, "Surface holography with LEED electrons," Prog. Surf. Sci. 64, 163-178 (2000).
[CrossRef]

Horch, S.

S. Horch and R. Morin, "Field emission from atomic size sources," J. Appl. Phys. 74, 3652-3657 (1993).
[CrossRef]

Huang, Y.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

Huisken, J.

Indebetouw, G.

Jäger, B.

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

Jericho, M. H.

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
[CrossRef]

H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
[CrossRef]

W. Xu, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Optik (to be published).

Jüptner, W.

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kamholz, A. E.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Kato, J.

Kawai, H.

Kim, E.-S.

Kim, M. K.

Kim, S.-G.

Kim, T.

Klysubun, P.

Korecki, J.

P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001).
[CrossRef]

Korecki, P.

P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001).
[CrossRef]

Kreis, T.

T. Kreis, Holographic Interferometry (Akademie Verlag, 1996).

Kreuzer, H. J.

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
[CrossRef]

H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
[CrossRef]

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).

H. J. Kreuzer, "Low energy electron point source microscopy," Micron 26, 503-509 (1995).
[CrossRef]

H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995).
[CrossRef]

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
[CrossRef]

W. Xu, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Optik (to be published).

H. J. Kreuzer and R. P. Pawlitzek, LEEPS, Version 1.2: a software package for the simulation and reconstruction of low energy electron point source images and other holograms, (Helix Science Applications, Halifax, Nova Scotia, Canada, 1993-1998).

H.-W. Fink, H. Schmid, and H. J. Kreuzer, "State of the art of low-energy electron holography," in Electron Holography, A.Tonomura, L.F.Allard, D.C.Pozzi, D.C.Joy, and Y.A.Ono, eds. (Elsevier Science B.V., 1995).

Kronrod, M. A.

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).

Lee, B.

Leith, E. N.

Lewis, N. I.

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

Liu, G.

Magistretti, P.

Marquet, P.

Martinez-Corral, M.

Materlik, G.

P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001).
[CrossRef]

Meinertzhagen, I. A.

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).

Merzlyakov, N. S.

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).

L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (translated from Russian by D. Parsons, Consultants Bureau, New York, 1989).

Mittra, R.

Mizuno, J.

Morin, R.

S. Horch and R. Morin, "Field emission from atomic size sources," J. Appl. Phys. 74, 3652-3657 (1993).
[CrossRef]

W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989).
[CrossRef]

Munson, M. S.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Nakamura, K.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

Oezgen, M. T.

Ohta, S.

Ohzu, H.

Onural, L.

Parrent, G.

Pawlitzek, R. P.

H. J. Kreuzer and R. P. Pawlitzek, LEEPS, Version 1.2: a software package for the simulation and reconstruction of low energy electron point source images and other holograms, (Helix Science Applications, Halifax, Nova Scotia, Canada, 1993-1998).

Pomerleau, N.

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
[CrossRef]

Poon, T.-C.

T.-C. Poon, "Recent progress in optical scanning holography," J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000).

T.-C. Poon, T. Kim, G. Indebetouw, M. H. Wu, K. Shinoda, and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett. 25, 215-217 (2000).

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).

K. Doh, T.-C. Poon, and G. Indebetouw, "Twin-image noise in optical scanning holography," Opt. Eng. 35, 1550-1555 (1996).

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).

Rappaz, B.

Rayleigh, L.

L. Rayleigh, Collected Papers (Cambridge U. Press, 1902), pp. 3, 84.

Schilling, B.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).

Schilling, B. W.

Schilling, E. A.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Schmid, H.

H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, "Electron holography of individual DNA molecules," J. Opt. Soc. Am. A 14, 2168-2172 (1997).

H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995).
[CrossRef]

H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
[CrossRef]

H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990).
[CrossRef]

H.-W. Fink, H. Schmid, and H. J. Kreuzer, "State of the art of low-energy electron holography," in Electron Holography, A.Tonomura, L.F.Allard, D.C.Pozzi, D.C.Joy, and Y.A.Ono, eds. (Elsevier Science B.V., 1995).

Schnars, U.

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Schulz, T.

Scott, P. D.

G. Liu and P. D. Scott, "Phase retrieval and twin-image elemination for in-line Fresnel holograms," J. Opt. Soc. Am. A 4, 159-165 (1987).

L. Onural and P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).

Shinoda, K.

Starke, U.

K. Heinz, U. Starke, and J. Bernardt, "Surface holography with LEED electrons," Prog. Surf. Sci. 64, 163-178 (2000).
[CrossRef]

Stelzer, E.

Stocker, W.

H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990).
[CrossRef]

W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989).
[CrossRef]

Storrie, B.

Sun, P.

Suzuki, Y.

Swoger, J.

Takaki, Y.

Thompson, B. J.

Upatnieks, J.

Völkel, B.

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

Wang, X. B.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

Weigl, B. H.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Wierzbicki, A.

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993).

Wu, M.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).

Wu, M. H.

Xie, J.-H.

Xu, W.

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
[CrossRef]

H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).

W. Xu, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Optik (to be published).

Yager, P.

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).

Yamaguchi, I.

Yang, J.

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

Yaroslavski, L. P.

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).

Yaroslavskii, L. P.

L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (translated from Russian by D. Parsons, Consultants Bureau, New York, 1989).

Yaroslavsky, L. P.

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).

Zhamikov, M.

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

Zhang, T.

Anal. Chem. (1)

J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999).
[CrossRef]

Appl. Opt. (6)

Biophys. J. (1)

J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).

Can. Tech. Rep. Fish. Aquat. Sci. (1)

N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).

IBM J. Res. Dev. (1)

H.-W. Fink, "Point source for electrons and ions," IBM J. Res. Dev. 30, 460-463 (1986).

IEEE Trans. Acoust. Speech (1)

Y. Aoki, "Optical and numerical reconstruction of images from sound-wave holograms," IEEE Trans. Acoust. Speech AU-18, 258-267 (1970).

J. Appl. Phys. (1)

S. Horch and R. Morin, "Field emission from atomic size sources," J. Appl. Phys. 74, 3652-3657 (1993).
[CrossRef]

J. Holography Speckle (1)

T.-C. Poon, "Recent progress in optical scanning holography," J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

J. Microsc. (1)

H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (5)

J. Phys. Condens. Matter (1)

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001).
[CrossRef]

J. Vac. Sci. Technol. A (1)

A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Micron (1)

H. J. Kreuzer, "Low energy electron point source microscopy," Micron 26, 503-509 (1995).
[CrossRef]

Nat. Biotechnol. (1)

A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001).
[CrossRef]

Nature (1)

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).

Nouv. Rev. Opt. (1)

T. Asakura, "Resolution of two unequally bright points with partially coherent light," Nouv. Rev. Opt. 5, 169-177 (1974).
[CrossRef]

Opt. Eng. (3)

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).

L. Onural and P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).

K. Doh, T.-C. Poon, and G. Indebetouw, "Twin-image noise in optical scanning holography," Opt. Eng. 35, 1550-1555 (1996).

Opt. Lett. (7)

Phys. Rev. Lett. (5)

P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001).
[CrossRef]

J. J. Barton, "Removing multiple scattering and twin images from hologaphic images," Phys. Rev. Lett. 67, 3106-3109 (1991).
[CrossRef]

J. J. Barton, "Photoelectron holography," Phys. Rev. Lett. 61, 1356-1359 (1988).
[CrossRef]

H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990).
[CrossRef]

H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991).
[CrossRef]

Phys. Scr. (1)

H.-W. Fink, "Point source for electrons and ions," Phys. Scr. 38, 260-263 (1988).

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).

Proc. R. Soc. London Ser. A (1)

D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1949).

Proc. SPIE (3)

H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001).
[CrossRef]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003).
[CrossRef]

H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999).
[CrossRef]

Prog. Surf. Sci. (1)

K. Heinz, U. Starke, and J. Bernardt, "Surface holography with LEED electrons," Prog. Surf. Sci. 64, 163-178 (2000).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).

Ultramicroscopy (2)

H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992).
[CrossRef]

W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989).
[CrossRef]

Other (9)

H.-W. Fink, H. Schmid, and H. J. Kreuzer, "State of the art of low-energy electron holography," in Electron Holography, A.Tonomura, L.F.Allard, D.C.Pozzi, D.C.Joy, and Y.A.Ono, eds. (Elsevier Science B.V., 1995).

H. J. Kreuzer and R. P. Pawlitzek, LEEPS, Version 1.2: a software package for the simulation and reconstruction of low energy electron point source images and other holograms, (Helix Science Applications, Halifax, Nova Scotia, Canada, 1993-1998).

P. Hariharan, Optical Holography (Cambridge U. Press, 1996).

T. Kreis, Holographic Interferometry (Akademie Verlag, 1996).

L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (translated from Russian by D. Parsons, Consultants Bureau, New York, 1989).

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).

L. Rayleigh, Collected Papers (Cambridge U. Press, 1902), pp. 3, 84.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993).

W. Xu, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Optik (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of DIHM: laser L is focused onto pinhole P. The emerging spherical wave illuminates object O, and the interference pattern or hologram is recorded on screen C.

Fig. 2
Fig. 2

Test of lateral resolution. A, Simulated hologram of two points close to the optical axis and 0.8 μm apart, taken with a blue laser with λ = 4730 Å and a numerical aperture of 0.5 (0.28 for the inner square). B, Reconstruction from the full hologram, with the intensity profile showing submicrometer resolution. C, Same as B but for the smaller hologram, showing a loss of resolution.

Fig. 3
Fig. 3

Depth resolution: two point particles placed along the optical axis, 380 μm from the point source. Numerical aperture of the screen is 0.5 (512 × 512 pixels). Cuts along the optical axis for a particle separation of A, 4 μm; B, 3.5 μm; and C, 3 μm.

Fig. 4
Fig. 4

Pinhole size effect: A, Hologram of a positive USAF 1951 test target taken with a 0.5 μm pinhole; B, reconstruction (after background subtraction); C, central section (groups 6 and 7) only; D–F, same but for a 2 μm pinhole. Laser wavelength of 408 nm and numerical aperture of NA = 0.208.

Fig. 5
Fig. 5

Depth of field shown with 1 μm latex beads in a 150 μm thick gelatine layer on a cover slide (to immobilize them): A, Hologram and B–F, five reconstructions at different depths, ranging from 3 mm to 30 μm, from the cover slide. Pinhole diameter, 0.5 μm; numerical aperture, 0.2; λ = 532 nm.

Fig. 6
Fig. 6

A, Twin image of C (i.e., reconstructed at the same distance on the other side of the pinhole); B, reconstruction at the origin, showing the pinhole of size 0.5 μm.

Fig. 7
Fig. 7

Schematic diagram of the sample chamber used to study the fluid flow around obstructions. The chamber was constructed with microscope and coverslip slides. Light propagated perpendicular to the plane of the paper. The particle suspension (5 and 10 μm latex spheres in water) entered from the right and was moved through the chamber with the help of a capillary pump on the left. The microchannel contained the obstruction and the channel cross sections could be adjusted by varying the thickness of the spacer plate. The circle identifies the location of the corner flow examined.

Fig. 8
Fig. 8

Flow of 5 μm tracer beads around a 140 μm sphere. A, Reconstruction from a difference hologram of 200 individual holograms taken 67 ms apart in the equatorial plane of the sphere. Arrow indicates flow direction. (λ = 532 nm, NA = 0.2). B, Local fluid speed calculated from successive positions along traces (a), (b), and (c) in A. Results for trace (c) were displaced upward by 100 μm∕s for clarity.

Fig. 9
Fig. 9

Stream lines around a stationary sphere reconstructed from a difference hologram. A, Stream line (a) was 24 μm above that of stream line (b) and is partially obscured by the sphere. Stream line (b) shows the trajectory of a bead dimer and illustrates the action of shear forces near the bead boundary that cause the dimer to tumble. B, Enlarged view of the dimer trajectory.

Fig. 10
Fig. 10

Experimental arrangement for biological applications.

Fig. 11
Fig. 11

(Color online) Three-dimensional rendering of the motion of algae in seawater approaching a concentrated salt solution in the lower half of the tank.

Fig. 12
Fig. 12

Bacteria in a diatom (Coscinodiscus wailesii). A, Reconstruction from one hologram showing the siliceous outer shell with labiate processes (bright spots); B, reconstruction of bacterial trajectories from a difference hologram composed of a time series of 20 holograms taken 1.3 s apart. Green laser; 0.5 μm pinhole; pinhole to sample (diatom), 1 mm; numerical aperture, 0.22.

Fig. 13
Fig. 13

Underwater DIHM.

Fig. 14
Fig. 14

Images taken with the underwater DIHM. A, Paramecium (length, 320 μm; width, 46.8 μm). B–D, Trajectories of various species swimming through the observation window, with a frame rate of 10 frames∕s. B, Ciliate (length, 25 μm; width, 13 μm); C, Didinium (length, 133 μm; width, 77 μm); D, Rotifer (length, 200 μm; width, 100 μm).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ˜ ( r , t ) = | A ref ( r , t ) + A scat ( r , t ) | 2 | A ref ( r , t ) | 2 = [ A ref * ( r , t ) A scat ( r , t ) + A ref ( r , t ) A scat * ( r , t ) ] + | A scat ( r , t ) | 2 .
K ( r ) = screen d 2 ξ I ˜ ( ξ ) exp [ i k r ξ / | ξ | ] ,
A ( r ) = A 0 exp [ i k r ] r + A 1 exp [ i k | r r 1 | ] | r r 1 | + A 2 exp [ i k | r r 2 | ] | r r 2 | .
I ˜ ( r ) = I ( r ) A 0     2 r 2
= A 1     2 | r r 1 | 2 + A 2     2 | r r 2 | 2 + 2 A 1 A 2 | r 1 r 2 | 2 cos [ k ( | r r 1 | | r r 2 | ) ] + { 2 A 0 A 1 r | r r 1 | cos [ k ( r | r r 1 | ) ] + 2 A 0 A 2 r | r r 2 | cos [ k ( r | r r 2 | ) ] } .
I ˜ ( r ) = 4 A 0 A 1 r | r r 1 | cos [ k ( 2 r | r r 1 | | r r 2 | ) / 2 ] cos [ k ( | r r 1 | | r r 2 | ) / 2 ] .
| r 2 r 1 | λ 2 NA ,
K ( r ) = A i n = 0 ( 1 ) n / 2 a n P n ( z z i | r r i | ) j n ( k | r r i | ) .
a n = ( n + 1 / 2 ) cos θ m 1 P n ( t ) d t
| r 2 r 1 | λ 2 ( NA ) 2 .

Metrics