Abstract

We demonstrate the use of digital holographic microscopy (DHM) as a metrological tool in micro-optics testing. Measurement principles are compared with those performed with Twyman–Green, Mach–Zehnder, and white-light interferometers. Measurements performed on refractive microlenses with reflection DHM are compared with measurements performed with standard interferometers. Key features of DHM such as digital focusing, measurement of shape differences with respect to a perfect model, surface roughness measurements, and optical performance evaluation are discussed. The capability of imaging nonspherical lenses without any modification of the optomechanical setup is a key advantage of DHM compared with conventional measurement tools and is demonstrated on a cylindrical microlens and a square lens array.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  3. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  4. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  5. M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000).
    [CrossRef] [PubMed]
  6. T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
    [CrossRef]
  7. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelengths," Opt. Express 11, 767-774 (2003).
    [CrossRef] [PubMed]
  8. V. Kebbel, J. Muller, and W. P.O. Juptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications,Proc. SPIE 4778, 188-197 (2002).
    [CrossRef]
  9. K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
    [CrossRef]
  10. J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
    [CrossRef]
  11. P. Hariharan, B. F. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Appl. Opt. 26, 2504-2506 (1987).
    [CrossRef] [PubMed]
  12. K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
    [CrossRef]
  13. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]
  14. E. Cuche, P. Marquet, and C. Depeursinge, "Aperture apodization using cubic spline interpolation: application in digital holographic microscopy," Opt. Commun. 182, 59-69 (2000).
    [CrossRef]
  15. H. Takajo and T. Takahashi, "Noniterative method for obtaining the exact solution for the normal equation in least-squares phase estimation from the phase difference," J. Opt. Soc. Am. A 5, 1818-1827 (1988).
    [CrossRef]

2004 (2)

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

2003 (1)

2002 (1)

V. Kebbel, J. Muller, and W. P.O. Juptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications,Proc. SPIE 4778, 188-197 (2002).
[CrossRef]

2000 (3)

1999 (1)

1994 (1)

1993 (2)

K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
[CrossRef]

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

1988 (1)

1987 (1)

1972 (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).

1967 (1)

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Colomb, T.

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

Cuche, E.

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Aperture apodization using cubic spline interpolation: application in digital holographic microscopy," Opt. Commun. 182, 59-69 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

Demoli, N.

Depeursinge, C.

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Aperture apodization using cubic spline interpolation: application in digital holographic microscopy," Opt. Commun. 182, 59-69 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

Eiju, T.

Eisner, M.

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Falkenstorrer, O.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Feldblum, A. Y.

K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Hariharan, P.

Haselbeck, S.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Herzig, H. P.

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Hoffmann, S.

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Juptner, W. P.O.

V. Kebbel, J. Muller, and W. P.O. Juptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications,Proc. SPIE 4778, 188-197 (2002).
[CrossRef]

Jüptner, W.

Kebbel, V.

V. Kebbel, J. Muller, and W. P.O. Juptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications,Proc. SPIE 4778, 188-197 (2002).
[CrossRef]

Keinonen, T.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Kim, M. K.

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Lindlein, N.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Marquet, P.

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Aperture apodization using cubic spline interpolation: application in digital holographic microscopy," Opt. Commun. 182, 59-69 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

Mersereau, K. O.

K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
[CrossRef]

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Montfort, F.

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

Muller, J.

V. Kebbel, J. Muller, and W. P.O. Juptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications,Proc. SPIE 4778, 188-197 (2002).
[CrossRef]

Nijander, C. R.

K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
[CrossRef]

Oreb, B. F.

Scharf, T.

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Schnars, U.

Schreiber, H.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Schwider, J.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Sheridan, S.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Sickinger, H.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Strwubl, N.

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

Takahashi, T.

Takajo, H.

Torzynski, M.

Towsend, W. P.

K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
[CrossRef]

Volkel, R.

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Vukicevic, D.

Weible, K. J.

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Yaroslavskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

E. Cuche, P. Marquet, and C. Depeursinge, "Aperture apodization using cubic spline interpolation: application in digital holographic microscopy," Opt. Commun. 182, 59-69 (2000).
[CrossRef]

T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, "Jones vector imaging by use of digital holography: simulation and experimentation," Opt. Commun. 231, 137-147 (2004).
[CrossRef]

Opt. Express (2)

Proc. SPIE (4)

V. Kebbel, J. Muller, and W. P.O. Juptner, "Characterization of aspherical micro-optics using digital holography: improvement of accuracy," in Interferometry XI: Applications,Proc. SPIE 4778, 188-197 (2002).
[CrossRef]

K. O. Mersereau, C. R. Nijander, A. Y. Feldblum, and W. P. Towsend, "Testing and measurement of microlenses," in Miniature and Micro-optics and Micromechanics,Proc. SPIE 1992, 210-215 (1993).
[CrossRef]

J. Schwider, S. Haselbeck, H. Schreiber, H. Sickinger, O. Falkenstorrer, N. Lindlein, T. Keinonen, S. Sheridan, and N. Strwubl, "Production and control of refractive and diffractive microlenses," in Miniature and Micro-Optics and Micromechanics,Proc. SPIE 1992, 102-113 (1993).
[CrossRef]

K. J. Weible, R. Volkel, M. Eisner, S. Hoffmann, T. Scharf, and H. P. Herzig, "Metrology of refractive microlens arrays," in Optical Micro- and Nanometrology in Manufacturing Technology,Proc. SPIE 5458, 43-51 (2004).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Holographic microscope for transmission imaging: (a) experimental setup and (b) integrated instrument. NF, neutral-density filter; PBS, polarizing beam splitter; BE, beam expander with spatial filter; λ/2, half-wave plate; OL, objective lens; M, mirror; BS, beam splitter; O, object wave; R, reference wave. Inset, detail showing the off-axis geometry at incidence on the CCD.

Fig. 2
Fig. 2

Holographic microscope for reflection imaging: (a) experimental setup and (b) integrated instrument. Inset, detail showing the off-axis geometry at incidence on the CCD.

Fig. 3
Fig. 3

Phase images of a quartz refractive transmission lens (diameter of 240 μm, maximal measured height of 21.15 μm, measured ROC of 351 μm) obtained with transmission DHM: (a) wrapped and (c) unwrapped 2D representations with corresponding (b) phase and (d) height profiles taken along the two dashed lines in (a) and (c).

Fig. 4
Fig. 4

Comparison between the real and the ideal profile is possible with DHM. By adjusting the reconstruction parameters involved in the reconstruction process, either the wavefront deformations of the objective lens are compensated [standard mode, (a)] or the spherical surface of the lens (here a quartz transmission lens) is compensated (compensation mode). The residue is obtained as the difference between the real and the ideal profile, presented in (b).

Fig. 5
Fig. 5

Roughness measurement on the surface of a silicon refractive reflective lens (diameter of 241 μm, height of 4.38 μm). A comparison between the real and the ideal profile is possible with DHM. After adjustment of the reconstruction parameters, the residue is obtained as the difference between the real and the ideal profile, presented in (a). Some standard roughness values calculated over a profile are presented in (b), and the extracted profile, corresponding to the white line in (a), is presented in (c).

Fig. 6
Fig. 6

Perspective phase images of three different lens types measured with the same transmission DHM: (a) cylindrical quartz refractive transmission lens (diameter of 160 μm, maximal measured height of 7.73 μm, measured ROC of 417.8 μm), (b) quartz refractive transmission lens (diameter of 240 μm, maximal measured height of 21.15 μm, measured ROC of 351 μm), and (c) square quartz lens array (pitch of 500 μm, maximal height of 5.5 μm, ROC of 5600 μm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( m Δ ξ , n Δ η ) = A Φ ( m , n ) exp [ i π λ d ( m 2 Δ ξ 2 + n 2 Δ η 2 ) ] × FFT { R D ( k , l ) I H ( k , l ) × exp [ i π λ d ( k 2 x ¯ 2 + l 2 y ¯ 2 ) ] } m , n ,
R D ( k , l ) = exp [ i ( k D x k x ¯ + k D y l y ¯ ) ] ,
Φ ( m , n ) = exp [ i π / ( λ d 1 ) m 2 Δ ξ 2 i π / ( λ d 2 ) n 2 Δ η 2 ] ,

Metrics