Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis

Not Accessible

Your library or personal account may give you access

Abstract

The Monte Carlo-based inverse model of diffuse reflectance described in part I of this pair of companion papers was applied to the diffuse reflectance spectra of a set of 17 malignant and 24 normal–benign ex vivo human breast tissue samples. This model allows extraction of physically meaningful tissue parameters, which include the concentration of absorbers and the size and density of scatterers present in tissue. It was assumed that intrinsic absorption could be attributed to oxygenated and deoxygenated hemoglobin and beta-carotene, that scattering could be modeled by spheres of a uniform size distribution, and that the refractive indices of the spheres and the surrounding medium are known. The tissue diffuse reflectance spectra were evaluated over a wavelength range of 400600  nm. The extracted parameters that showed the statistically most significant differences between malignant and nonmalignant breast tissues were hemoglobin saturation and the mean reduced scattering coefficient. Malignant tissues showed decreased hemoglobin saturation and an increased mean reduced scattering coefficient compared with nonmalignant tissues. A support vector machine classification algorithm was then used to classify a sample as malignant or nonmalignant based on these two extracted parameters and produced a cross-validated sensitivity and specificity of 82% and 92%, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Model based and empirical spectral analysis for the diagnosis of breast cancer

Changfang Zhu, Tara M. Breslin, Josephine Harter, and Nirmala Ramanujam
Opt. Express 16(19) 14961-14978 (2008)

Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model

Maya S. Nair, Nirmalya Ghosh, Narisetti Sundar Raju, and Asima Pradhan
Appl. Opt. 41(19) 4024-4035 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved