Abstract

The Monte Carlo-based inverse model of diffuse reflectance described in part I of this pair of companion papers was applied to the diffuse reflectance spectra of a set of 17 malignant and 24 normal–benign ex vivo human breast tissue samples. This model allows extraction of physically meaningful tissue parameters, which include the concentration of absorbers and the size and density of scatterers present in tissue. It was assumed that intrinsic absorption could be attributed to oxygenated and deoxygenated hemoglobin and beta-carotene, that scattering could be modeled by spheres of a uniform size distribution, and that the refractive indices of the spheres and the surrounding medium are known. The tissue diffuse reflectance spectra were evaluated over a wavelength range of 400600  nm. The extracted parameters that showed the statistically most significant differences between malignant and nonmalignant breast tissues were hemoglobin saturation and the mean reduced scattering coefficient. Malignant tissues showed decreased hemoglobin saturation and an increased mean reduced scattering coefficient compared with nonmalignant tissues. A support vector machine classification algorithm was then used to classify a sample as malignant or nonmalignant based on these two extracted parameters and produced a cross-validated sensitivity and specificity of 82% and 92%, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).
  2. D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).
  3. J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).
  4. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
    [CrossRef]
  5. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
    [CrossRef]
  6. Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
    [CrossRef]
  7. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).
  8. G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).
  9. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
  10. F. P. Bolin, C. R. Preuss, C. R. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297-2303 (1989).
  11. F. A. Duck, Physical Properties of Tissue:Comprehensive Reference Book (Academic, 1990).
  12. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van-Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999).
  13. J. R. Mourant, T. M. Johnson, and J. P. Freyer, "Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements," Appl. Opt. 40, 5114-5123 (2001).
  14. Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
    [CrossRef]
  15. S. Prahl, Optical Properties Spectra (Oregon Medical Laser Center, 2003); available at http://omlc.ogi.edu/spectra.
  16. R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, 1995).
  17. S. Gunn, Support Vector Machines for Classification and Regression (University of Southampton, Department of Electronics and Computer Science, 1998); available at http://www.ecs.soton.ac.uk/∼srg/publications/pdf/SVM.pdf.
  18. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov. 2, 121-167 (1998).
    [CrossRef]
  19. P. I. Good, Resampling Methods: A Practical Guide to Data Analysis (Birkhäuser, 2001).
  20. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice-Hall, 2002).
  21. C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
    [CrossRef]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
    [CrossRef]
  23. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
  24. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
    [CrossRef]
  25. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
  26. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).
  27. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
    [CrossRef]
  28. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
    [CrossRef]

2006 (1)

2005 (1)

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

2004 (1)

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

2003 (3)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

2002 (2)

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
[CrossRef]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

2001 (3)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
[CrossRef]

J. R. Mourant, T. M. Johnson, and J. P. Freyer, "Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements," Appl. Opt. 40, 5114-5123 (2001).

2000 (2)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

1999 (2)

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van-Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999).

1998 (4)

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

C. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov. 2, 121-167 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).

1996 (1)

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).

1989 (1)

Abramson, A. F.

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).

Alfano, R. R.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
[CrossRef]

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
[CrossRef]

Backman, V.

Bethea, R. M.

R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, 1995).

Bigio, I. J.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Bolin, F. P.

Boullion, T. L.

R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, 1995).

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Breslin, T. M.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Burges, C.

C. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov. 2, 121-167 (1998).
[CrossRef]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Celmer, E. J.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
[CrossRef]

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Chernomordik, V.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

Christian, R. L.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Denison, C. M.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Dershaw, D. D.

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).

DiPiro, P. J.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Duck, F. A.

F. A. Duck, Physical Properties of Tissue:Comprehensive Reference Book (Academic, 1990).

Duran, B. S.

R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, 1995).

Eick, A. A.

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Fantini, S.

Feld, M. S.

Ference, R. J.

Finkelstein, S. I.

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

Fitzmaurice, M.

Franceschini, M. A.

Freyer, J. P.

Gandjbakhche, A.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

Ghosh, N.

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Gilchrist, K. W.

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

Good, P. I.

P. I. Good, Resampling Methods: A Practical Guide to Data Analysis (Birkhäuser, 2001).

Grosenick, D.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

Gunn, S.

S. Gunn, Support Vector Machines for Classification and Regression (University of Southampton, Department of Electronics and Computer Science, 1998); available at http://www.ecs.soton.ac.uk/∼srg/publications/pdf/SVM.pdf.

Gupta, P. K.

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).

Harvey, S. C.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Hattery, D. W.

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

Hielscher, A. H.

Jackman, R. J.

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

Jiang, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Johnson, R. A.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice-Hall, 2002).

Johnson, T. M.

Kaschke, M.

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Ko, W. D.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Kogel, C.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Koutcher, J. A.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
[CrossRef]

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
[CrossRef]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Lester, S. C.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Liberman, L.

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).

Macdonald, R.

Majumder, S. K.

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).

Manoharan, R.

Marzoni, F. A.

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Meyer, J. E.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Moesta, K. T.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).

Mohanty, S. K.

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).

Moller, M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

Morris, E. A.

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).

Mourant, J. R.

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

Nowels, K. W.

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Palmer, G. M.

G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

Paulsen, K. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Perelman, L. T.

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Pogue, B. W.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Poplack, S. P.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Prahl, S.

S. Prahl, Optical Properties Spectra (Oregon Medical Laser Center, 2003); available at http://omlc.ogi.edu/spectra.

Preuss, C. R.

Ramanujam, N.

G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

Richardson, A.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Rinneberg, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Rodriguez-Soto, J.

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

Schlag, P. M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Shen, D.

Shepard, M. J.

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

Smith, D. N.

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Stossel, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

Stroszczynski, C.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Taylor, C. R.

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Van-Dam, J.

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

Walker, S. A.

Wassermann, B.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

Wichern, D. W.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice-Hall, 2002).

Xu, F.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

Yang, Y.

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
[CrossRef]

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
[CrossRef]

Zhu, C.

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

Zonios, G.

Appl. Opt. (7)

Data Min. Knowl. Discov. (1)

C. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov. 2, 121-167 (1998).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003).
[CrossRef]

J. Biomed. Opt. (3)

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000).
[CrossRef]

C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005).
[CrossRef]

V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002).
[CrossRef]

J. Clin. Laser Med. Surg. (1)

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001).
[CrossRef]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef]

Photochem. Photobiol. (1)

Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002).
[CrossRef]

Phys. Med. Biol. (1)

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003).
[CrossRef]

Radiology (4)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).

R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).

D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).

J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).

Other (7)

P. I. Good, Resampling Methods: A Practical Guide to Data Analysis (Birkhäuser, 2001).

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice-Hall, 2002).

F. A. Duck, Physical Properties of Tissue:Comprehensive Reference Book (Academic, 1990).

S. Prahl, Optical Properties Spectra (Oregon Medical Laser Center, 2003); available at http://omlc.ogi.edu/spectra.

R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, 1995).

S. Gunn, Support Vector Machines for Classification and Regression (University of Southampton, Department of Electronics and Computer Science, 1998); available at http://www.ecs.soton.ac.uk/∼srg/publications/pdf/SVM.pdf.

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diffuse reflectance spectra of (a) a malignant and (b) an adipose breast tissue sample obtained from the same patient and the corresponding fit to the inverse Monte Carlo model. Two different fits were carried out. The first fit included the four absorbers: oxygenated hemoglobin, deoxygenated hemoglobin, beta-carotene, and Lymphazurin (fitted). The second fit included the same four absorbers and an additional Gaussian function (fitted with Gaussian). c.u., calibrated units.

Fig. 2
Fig. 2

Scatter plot of the beta-carotene concentration and peak μ a of the Gaussian absorber. It can be seen that these two parameters are highly correlated (the correlation coefficient is 0.9).

Fig. 3
Fig. 3

Extracted (a) absorption coefficient and (b) reduced scattering coefficient spectra extracted from the fits to the malignant and adipose tissue diffuse reflectance spectra (obtained without the Gaussian function).

Fig. 4
Fig. 4

Mean and standard deviations of (a) hemoglobin and beta-carotene concentrations, (b) hemoglobin saturation, and (c) mean μ s averaged over the wavelength range of 400–600 nm of adipose, fibrous, and malignant breast tissues. The most significant differences between malignant and nonmalignant tissue are seen in hemoglobin saturation, beta-carotene concentration, and the mean μ s . Note that a fibrous sample with an extracted total hemoglobin concentration of 87 μM was excluded from plot (a) since it drastically skewed the plot scale.

Fig. 5
Fig. 5

Scatter plot of two extracted parameters, hemoglobin saturation and mean μ s ′, which showed the statistically most significant differences between malignant and nonmalignant breast tissues.

Metrics