Abstract

A flexible and fast Monte Carlo-based model of diffuse reflectance has been developed for the extraction of the absorption and scattering properties of turbid media, such as human tissues. This method is valid for a wide range of optical properties and is easily adaptable to existing probe geometries, provided a single phantom calibration measurement is made. A condensed Monte Carlo method was used to speed up the forward simulations. This model was validated by use of two sets of liquid-tissue phantoms containing Nigrosin or hemoglobin as absorbers and polystyrene spheres as scatterers. The phantoms had a wide range of absorption (020cm1) and reduced scattering coefficients (733cm1). Mie theory and a spectrophotometer were used to determine the absorption and reduced scattering coefficients of the phantoms. The diffuse reflectance spectra of the phantoms were measured over a wavelength range of 350850  nm. It was found that optical properties could be extracted from the experimentally measured diffuse reflectance spectra with an average error of 3% or less for phantoms containing hemoglobin and 12% or less for phantoms containing Nigrosin.

© 2006 Optical Society of America

Full Article  |  PDF Article

Corrections

Gregory M. Palmer and Nirmala Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms: erratum," Appl. Opt. 46, 6847-6847 (2007)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-46-27-6847

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription