Abstract

Active fluorescence (F) sensing systems have long been suggested as a means to identify species composition and determine physiological status of plants. Passive F systems for large-scale remote assessment of vegetation will undoubtedly rely on solar-induced F (SIF), and this information could potentially be obtained from the Fraunhofer line depth (FLD) principle. However, understanding the relationships between the information and knowledge gained from active and passive systems remains to be addressed. Here we present an approach in which actively induced F spectral data are used to simulate and project the magnitude of SIF that can be expected from near-ground observations within selected solar Fraunhofer line regions. Comparisons among vegetative species and nitrogen (N) supply treatments were made with three F approaches: the passive FLD principle applied to telluric oxygen (O2) bands from field-acquired canopy reflectance spectra, simulated SIF from actively induced laboratory emission spectra of leaves at a series of solar Fraunhofer lines ranging from 422 to 758nm, and examination of two dual-F excitation algorithms developed from laboratory data. From these analyses we infer that SIF from whole-plant canopies can be simulated by use of laboratory data from active systems on individual leaves and that SIF has application for the large-scale assessment of vegetation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
    [CrossRef]
  2. L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
    [CrossRef]
  3. P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
    [CrossRef]
  4. E. Chappelle, F. Wood, J. McMurtrey, and W. Newcomb, "Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation," Appl. Opt. 23, 134-138 (1984).
    [CrossRef] [PubMed]
  5. L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
    [CrossRef]
  6. F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
    [CrossRef]
  7. G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
    [CrossRef]
  8. J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
    [CrossRef]
  9. H. Lichtenthaler and U. Rinderle, "Role of chlorophyll fluorescence in the detection of stress conditions of plants," CRC Crit. Rev. Anal. Chem. 19, 29-85 (1988).
  10. G. Agati, Z. Cerovic, and I. Moya, "The effect of temperature on chlorophyll fluorescence: the role of PSI in 735 nm fluorescence," Photochem. Photobiol. 72, 75-84 (2000).
    [CrossRef] [PubMed]
  11. S. Bose, "Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis," Photochem. Photobiol. 36, 725-731 (1982).
    [CrossRef]
  12. E. Pfundel, "Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence," Photosynth. Res. 56, 185-195 (1998).
    [CrossRef]
  13. Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).
  14. A. Gitelson, C. Buschmann, and H. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
    [CrossRef]
  15. R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
    [CrossRef]
  16. E. Chappelle, J. McMurtrey, F. Wood, and W. Newcomb, "Laser-induced fluorescence of green plants. 2. LIF caused by nutrient deficiencies in corn," Appl. Opt. 23, 139-142 (1984).
    [CrossRef] [PubMed]
  17. L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
    [CrossRef]
  18. G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
    [CrossRef]
  19. E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
    [CrossRef]
  20. G. Mohammed, W. Binder, and S. Gillies, "Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation," Scand. J. Res. 10, 383-410 (1995).
    [CrossRef]
  21. A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
    [CrossRef]
  22. A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
    [CrossRef]
  23. J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.
  24. A. Theisen, "Detecting chlorophyll fluorescence from orbit: the Fraunhofer line depth model," in From Laboratory Spectroscopy to Remote Sensor Spectra of Terrestrial Ecosystems, R. S. Muttiah, ed. (Springer, 2002), pp. 203-232.
  25. G. Carter, A. Theisen, and R. Mitchell, "Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field," Plant Cell Environ. 13, 79-83 (1990).
    [CrossRef]
  26. A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
    [CrossRef]
  27. P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
    [CrossRef]
  28. J. McFarlane, R. Watson, and A. Theisen, "Plant stress detection by remote measurement of fluorescence," Appl. Opt. 19, 3287-3289 (1980).
    [CrossRef] [PubMed]
  29. I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
    [CrossRef]
  30. C. Moore, M. Minnaert, and J. Houtgast, The Solar Spectrum 2935 Delta to 8770 Delta: Second Revision of Rowland's Preliminary Table of Solar Spectrum Wavelengths, Natl. Bur. Stand. (U.S.) Monogr. 61 (1966).
    [PubMed]
  31. J. Plascyk, "The MKII Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence," Opt. Eng. 14, 339-346 (1975).
  32. A. Wellburn, "The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution," J. Plant Physiol. 144, 307-313 (1994).
  33. G. Bellomonte, A. Constantini, and S. Giammarioli, "Comparison of modified automatic Dumas method and the traditional Kjeldal method for N determination," J. Assoc. Off. Anal. Chem. 70, 227-229 (1987).
    [PubMed]
  34. Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
    [CrossRef]
  35. L. Eggink, H. Park, and J. Hoober, "The role of chlorophyll b in photosynthesis: hypothesis," Biomed. Cent. Plant Biol. 1, 2-8 (2001).
    [CrossRef]
  36. P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.
  37. K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
    [CrossRef]
  38. M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
    [CrossRef]
  39. C. Bushmann, G. Langsdorf, and H. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: an overview," Photosynthetica 38, 483-491 (2000).
    [CrossRef]
  40. M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
    [CrossRef]
  41. C. Daughtry, E. Hunt, and J. McMurtrey, "Assessing crop residue cover using shortwave infrared reflectance," Remote Sens. Environ. 90, 126-134 (2004).
    [CrossRef]

2005

L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
[CrossRef]

2004

C. Daughtry, E. Hunt, and J. McMurtrey, "Assessing crop residue cover using shortwave infrared reflectance," Remote Sens. Environ. 90, 126-134 (2004).
[CrossRef]

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

2003

P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
[CrossRef]

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

2002

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

2001

L. Eggink, H. Park, and J. Hoober, "The role of chlorophyll b in photosynthesis: hypothesis," Biomed. Cent. Plant Biol. 1, 2-8 (2001).
[CrossRef]

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
[CrossRef]

M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
[CrossRef]

2000

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

G. Agati, Z. Cerovic, and I. Moya, "The effect of temperature on chlorophyll fluorescence: the role of PSI in 735 nm fluorescence," Photochem. Photobiol. 72, 75-84 (2000).
[CrossRef] [PubMed]

C. Bushmann, G. Langsdorf, and H. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: an overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

1999

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

1998

A. Gitelson, C. Buschmann, and H. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
[CrossRef]

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

E. Pfundel, "Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence," Photosynth. Res. 56, 185-195 (1998).
[CrossRef]

1997

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

1996

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
[CrossRef]

1995

G. Mohammed, W. Binder, and S. Gillies, "Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation," Scand. J. Res. 10, 383-410 (1995).
[CrossRef]

1994

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

A. Wellburn, "The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution," J. Plant Physiol. 144, 307-313 (1994).

1992

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

1990

G. Carter, A. Theisen, and R. Mitchell, "Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field," Plant Cell Environ. 13, 79-83 (1990).
[CrossRef]

1988

H. Lichtenthaler and U. Rinderle, "Role of chlorophyll fluorescence in the detection of stress conditions of plants," CRC Crit. Rev. Anal. Chem. 19, 29-85 (1988).

1987

G. Bellomonte, A. Constantini, and S. Giammarioli, "Comparison of modified automatic Dumas method and the traditional Kjeldal method for N determination," J. Assoc. Off. Anal. Chem. 70, 227-229 (1987).
[PubMed]

1984

1982

S. Bose, "Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis," Photochem. Photobiol. 36, 725-731 (1982).
[CrossRef]

1980

1975

J. Plascyk, "The MKII Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence," Opt. Eng. 14, 339-346 (1975).

P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
[CrossRef]

Adamse, P.

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

Agati, G.

G. Agati, Z. Cerovic, and I. Moya, "The effect of temperature on chlorophyll fluorescence: the role of PSI in 735 nm fluorescence," Photochem. Photobiol. 72, 75-84 (2000).
[CrossRef] [PubMed]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Babani, F.

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

Bazzani, M.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Bazzaz, F.

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

Bellomonte, G.

G. Bellomonte, A. Constantini, and S. Giammarioli, "Comparison of modified automatic Dumas method and the traditional Kjeldal method for N determination," J. Assoc. Off. Anal. Chem. 70, 227-229 (1987).
[PubMed]

Berger, M.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Bhaskar, R.

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

Binder, W.

G. Mohammed, W. Binder, and S. Gillies, "Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation," Scand. J. Res. 10, 383-410 (1995).
[CrossRef]

Bose, S.

S. Bose, "Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis," Photochem. Photobiol. 36, 725-731 (1982).
[CrossRef]

Bratina, V.

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

Brewer, C.

G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
[CrossRef]

Briantais, J.

A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
[CrossRef]

Britz, S.

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

Buschmann, C.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

A. Gitelson, C. Buschmann, and H. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
[CrossRef]

Bushmann, C.

C. Bushmann, G. Langsdorf, and H. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: an overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

Butcher, L.

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Buurmeijer, W.

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

Camenen, L.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Campbell, P.

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Cannon, T.

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

Cartelat, A.

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

Carter, G.

G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
[CrossRef]

G. Carter, A. Theisen, and R. Mitchell, "Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field," Plant Cell Environ. 13, 79-83 (1990).
[CrossRef]

Cavender-Bares, J.

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

Cecchi, G.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

Cerovic, Z.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
[CrossRef]

G. Agati, Z. Cerovic, and I. Moya, "The effect of temperature on chlorophyll fluorescence: the role of PSI in 735 nm fluorescence," Photochem. Photobiol. 72, 75-84 (2000).
[CrossRef] [PubMed]

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

Chappelle, E.

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
[CrossRef]

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

E. Chappelle, F. Wood, J. McMurtrey, and W. Newcomb, "Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation," Appl. Opt. 23, 134-138 (1984).
[CrossRef] [PubMed]

E. Chappelle, J. McMurtrey, F. Wood, and W. Newcomb, "Laser-induced fluorescence of green plants. 2. LIF caused by nutrient deficiencies in corn," Appl. Opt. 23, 139-142 (1984).
[CrossRef] [PubMed]

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Chen, Y.

Constantini, A.

G. Bellomonte, A. Constantini, and S. Giammarioli, "Comparison of modified automatic Dumas method and the traditional Kjeldal method for N determination," J. Assoc. Off. Anal. Chem. 70, 227-229 (1987).
[PubMed]

Cook, W.

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Corp, L.

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Courrèges-Lacoste, G.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Court, A.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Cunin, B.

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

Daughtry, C.

C. Daughtry, E. Hunt, and J. McMurtrey, "Assessing crop residue cover using shortwave infrared reflectance," Remote Sens. Environ. 90, 126-134 (2004).
[CrossRef]

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
[CrossRef]

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

De Angelis, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Del Bello, U.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Dobrowski, S.

P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
[CrossRef]

Eggink, L.

L. Eggink, H. Park, and J. Hoober, "The role of chlorophyll b in photosynthesis: hypothesis," Biomed. Cent. Plant Biol. 1, 2-8 (2001).
[CrossRef]

Flexas, J.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Freedman, A.

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
[CrossRef]

Fusi, F.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Fvain, S.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Gambicorti, L.

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

Giammarioli, S.

G. Bellomonte, A. Constantini, and S. Giammarioli, "Comparison of modified automatic Dumas method and the traditional Kjeldal method for N determination," J. Assoc. Off. Anal. Chem. 70, 227-229 (1987).
[PubMed]

Gillies, S.

G. Mohammed, W. Binder, and S. Gillies, "Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation," Scand. J. Res. 10, 383-410 (1995).
[CrossRef]

Gitelson, A.

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

A. Gitelson, C. Buschmann, and H. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
[CrossRef]

Goulas, Y.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

Guzzi, R.

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

Hame, T.

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

Heisel, F.

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

Hoober, J.

L. Eggink, H. Park, and J. Hoober, "The role of chlorophyll b in photosynthesis: hypothesis," Biomed. Cent. Plant Biol. 1, 2-8 (2001).
[CrossRef]

Houtgast, J.

C. Moore, M. Minnaert, and J. Houtgast, The Solar Spectrum 2935 Delta to 8770 Delta: Second Revision of Rowland's Preliminary Table of Solar Spectrum Wavelengths, Natl. Bur. Stand. (U.S.) Monogr. 61 (1966).
[PubMed]

Hunt, E.

C. Daughtry, E. Hunt, and J. McMurtrey, "Assessing crop residue cover using shortwave infrared reflectance," Remote Sens. Environ. 90, 126-134 (2004).
[CrossRef]

Jones, J.

G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
[CrossRef]

Kallelis, S.

P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
[CrossRef]

Kebabian, P.

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
[CrossRef]

Kim, M.

M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
[CrossRef]

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

Lang, M.

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

Langsdorf, G.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

C. Bushmann, G. Langsdorf, and H. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: an overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

Latouche, G.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

Laurila, T.

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

Lichtenthaler, H.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

C. Bushmann, G. Langsdorf, and H. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: an overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

A. Gitelson, C. Buschmann, and H. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
[CrossRef]

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

H. Lichtenthaler and U. Rinderle, "Role of chlorophyll fluorescence in the detection of stress conditions of plants," CRC Crit. Rev. Anal. Chem. 19, 29-85 (1988).

Liu, L.

L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
[CrossRef]

Matteucci, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Mazzinghi, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

McFarlane, J.

McMurtrey, J.

C. Daughtry, E. Hunt, and J. McMurtrey, "Assessing crop residue cover using shortwave infrared reflectance," Remote Sens. Environ. 90, 126-134 (2004).
[CrossRef]

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
[CrossRef]

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

E. Chappelle, F. Wood, J. McMurtrey, and W. Newcomb, "Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation," Appl. Opt. 23, 134-138 (1984).
[CrossRef] [PubMed]

E. Chappelle, J. McMurtrey, F. Wood, and W. Newcomb, "Laser-induced fluorescence of green plants. 2. LIF caused by nutrient deficiencies in corn," Appl. Opt. 23, 139-142 (1984).
[CrossRef] [PubMed]

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Mesinger, J.

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

Meyer, S.

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

Middleton, E.

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

Miehe, J.

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

Minnaert, M.

C. Moore, M. Minnaert, and J. Houtgast, The Solar Spectrum 2935 Delta to 8770 Delta: Second Revision of Rowland's Preliminary Table of Solar Spectrum Wavelengths, Natl. Bur. Stand. (U.S.) Monogr. 61 (1966).
[PubMed]

Mitchell, R.

G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
[CrossRef]

G. Carter, A. Theisen, and R. Mitchell, "Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field," Plant Cell Environ. 13, 79-83 (1990).
[CrossRef]

Mohammed, G.

G. Mohammed, W. Binder, and S. Gillies, "Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation," Scand. J. Res. 10, 383-410 (1995).
[CrossRef]

Mokry, M.

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

Moore, C.

C. Moore, M. Minnaert, and J. Houtgast, The Solar Spectrum 2935 Delta to 8770 Delta: Second Revision of Rowland's Preliminary Table of Solar Spectrum Wavelengths, Natl. Bur. Stand. (U.S.) Monogr. 61 (1966).
[PubMed]

Morales, F.

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

Moya, I.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
[CrossRef]

G. Agati, Z. Cerovic, and I. Moya, "The effect of temperature on chlorophyll fluorescence: the role of PSI in 735 nm fluorescence," Photochem. Photobiol. 72, 75-84 (2000).
[CrossRef] [PubMed]

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

Mugnozza, G. Scarascia

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Mulchi, C.

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

M. Kim, J. McMurtrey, C. Mulchi, C. Daughtry, E. Chappelle, and Y. Chen, "Steady-state multispectral fluorescence imaging system for plant leaves," Appl. Opt. 40, 157-166 (2001).
[CrossRef]

Newcomb, W.

Ounis, A.

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
[CrossRef]

Pantani, L.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

Park, H.

L. Eggink, H. Park, and J. Hoober, "The role of chlorophyll b in photosynthesis: hypothesis," Biomed. Cent. Plant Biol. 1, 2-8 (2001).
[CrossRef]

Pfundel, E.

E. Pfundel, "Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence," Photosynth. Res. 56, 185-195 (1998).
[CrossRef]

Plascyk, J.

J. Plascyk, "The MKII Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence," Opt. Eng. 14, 339-346 (1975).

Pushnik, J.

P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
[CrossRef]

Raimondi, V.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Rinderle, U.

H. Lichtenthaler and U. Rinderle, "Role of chlorophyll fluorescence in the detection of stress conditions of plants," CRC Crit. Rev. Anal. Chem. 19, 29-85 (1988).

Rosema, A.

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

Samson, G.

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

Scott, H.

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

Sioris, C.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Smorenburg, K.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Snel, J.

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

Sowinska, M.

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

Stoll, M.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

Theisen, A.

G. Carter, A. Theisen, and R. Mitchell, "Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field," Plant Cell Environ. 13, 79-83 (1990).
[CrossRef]

J. McFarlane, R. Watson, and A. Theisen, "Plant stress detection by remote measurement of fluorescence," Appl. Opt. 19, 3287-3289 (1980).
[CrossRef] [PubMed]

P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
[CrossRef]

A. Theisen, "Detecting chlorophyll fluorescence from orbit: the Fraunhofer line depth model," in From Laboratory Spectroscopy to Remote Sensor Spectra of Terrestrial Ecosystems, R. S. Muttiah, ed. (Springer, 2002), pp. 203-232.

Timmermann, F.

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

Tirelli, D.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

Tremblay, N.

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

Ustin, S.

P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
[CrossRef]

Valentini, R.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

Van Hove, L.

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

Visser, H.

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

Wang, J.

L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
[CrossRef]

Watson, R.

Wellburn, A.

A. Wellburn, "The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution," J. Plant Physiol. 144, 307-313 (1994).

Wood, F.

Zahn, H.

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

Zarco-Tejada, P.

P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
[CrossRef]

Zhang, Y.

L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
[CrossRef]

Zhao, C.

L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
[CrossRef]

Zuccaro, A.

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

Agron. Agr. Environ.

Z. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, "Ultraviolet-induced fluorescence for plant monitoring: present state and prospects," Agron. Agr. Environ. 19, 543-578 (1999).

Appl. Opt.

Biomed. Cent. Plant Biol.

L. Eggink, H. Park, and J. Hoober, "The role of chlorophyll b in photosynthesis: hypothesis," Biomed. Cent. Plant Biol. 1, 2-8 (2001).
[CrossRef]

CRC Crit. Rev. Anal. Chem.

H. Lichtenthaler and U. Rinderle, "Role of chlorophyll fluorescence in the detection of stress conditions of plants," CRC Crit. Rev. Anal. Chem. 19, 29-85 (1988).

IEEE Trans. Geosci. Remote Sens.

L. Liu, Y. Zhang, J. Wang, and C. Zhao, "Detecting solar-induced chlorophyll fluorescence from field radiance spectra based on Fraunhofer line principle," IEEE Trans. Geosci. Remote Sens. 43, 827-832 (2005).
[CrossRef]

J. Assoc. Off. Anal. Chem.

G. Bellomonte, A. Constantini, and S. Giammarioli, "Comparison of modified automatic Dumas method and the traditional Kjeldal method for N determination," J. Assoc. Off. Anal. Chem. 70, 227-229 (1987).
[PubMed]

J. Plant Physiol.

A. Wellburn, "The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolution," J. Plant Physiol. 144, 307-313 (1994).

A. Gitelson, C. Buschmann, and H. Lichtenthaler, "Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements," J. Plant Physiol. 152, 283-296 (1998).
[CrossRef]

F. Heisel, M. Sowinska, J. Miehe, M. Lang, and H. Lichtenthaler, "Detection of nutrient deficiencies of maize by laser induced fluorescence imaging," J. Plant Physiol. 148, 622-631 (1996).
[CrossRef]

E. Middleton, E. Chappelle, T. Cannon, P. Adamse, and S. Britz, "Initial assessment of physiological response to UV-B irradiation using fluorescence measurements," J. Plant Physiol. 148, 68-77 (1996).
[CrossRef]

Opt. Eng.

J. Plascyk, "The MKII Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence," Opt. Eng. 14, 339-346 (1975).

Photochem. Photobiol.

G. Agati, Z. Cerovic, and I. Moya, "The effect of temperature on chlorophyll fluorescence: the role of PSI in 735 nm fluorescence," Photochem. Photobiol. 72, 75-84 (2000).
[CrossRef] [PubMed]

S. Bose, "Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis," Photochem. Photobiol. 36, 725-731 (1982).
[CrossRef]

Photosynth. Res.

E. Pfundel, "Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence," Photosynth. Res. 56, 185-195 (1998).
[CrossRef]

Photosynthetica

G. Langsdorf, C. Buschmann, M. Sowinska, F. Babani, M. Mokry, F. Timmermann, and H. Lichtenthaler, "Multicolour fluorescence imaging of sugar beet leaves with different nitrogen status by flash lamp UV-excitation," Photosynthetica 38, 539-551 (2000).
[CrossRef]

A. Freedman, J. Cavender-Bares, P. Kebabian, R. Bhaskar, H. Scott, and F. Bazzaz, "Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate," Photosynthetica 40, 127-132 (2002).
[CrossRef]

C. Bushmann, G. Langsdorf, and H. Lichtenthaler, "Imaging of the blue, green, and red fluorescence emission of plants: an overview," Photosynthetica 38, 483-491 (2000).
[CrossRef]

Plant Cell Environ.

Z. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, and I. Moya, "The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbine compounds in leaves," Plant Cell Environ. 25, 1663-1676 (2002).
[CrossRef]

G. Carter, A. Theisen, and R. Mitchell, "Chlorophyll fluorescence measured using the Fraunhofer line-depth principle and relationship to photosynthetic rate in the field," Plant Cell Environ. 13, 79-83 (1990).
[CrossRef]

Proc. SPIE

K. Smorenburg, G. Courrèges-Lacoste, M. Berger, C. Buschmann, A. Court, U. Del Bello, G. Langsdorf, H. Lichtenthaler, C. Sioris, M. Stoll, and H. Visser, "Remote sensing of solar induced fluorescence of vegetation," in Remote Sensing for Agriculture, Ecosystems and Hydrology III, M. Owe and G. D'Urso, eds., Proc. SPIE 4542, 178-190 (2001).
[CrossRef]

M. Stoll, T. Laurila, B. Cunin, A. Gitelson, H. Lichtenthaler, and T. Hame, "FLEX--Fluorescence Explorer--a space mission for screening vegetated areas in the Fraunhofer lines," in Remote Sensing for Earth Science, Oceans, and Sea Ice Applications, G. Cecchi, E. T. Engman, and E. Zilioli, eds., Proc. SPIE 3868, 108-119 (1999).
[CrossRef]

Remote Sens. Environ.

G. Carter, J. Jones, R. Mitchell, and C. Brewer, "Detection of solar-excited chlorophyll a fluorescence and leaf photosynthetic capacity using a Fraunhofer line radiometer," Remote Sens. Environ. 55, 89-92 (1996).
[CrossRef]

L. Corp, J. McMurtrey, E. Middleton, C. Mulchi, E. Chappelle, and C. Daughtry, "Fluorescence sensing systems: in vivo detection of biophysical variations in field corn due to nitrogen supply," Remote Sens. Environ. 86, 470-479 (2003).
[CrossRef]

I. Moya, L. Camenen, S. Fvain, Y. Goulas, Z. Cerovic, G. Latouche, J. Flexas, and A. Ounis, "A new instrument for passive remote sensing. 1. Measurements of sunlight-induced chlorophyll fluorescence," Remote Sens. Environ. 91, 186-197 (2004).
[CrossRef]

J. McMurtrey, E. Chappelle, M. Kim, J. Mesinger, and L. Corp, "Development of algorithms for detecting N fertilization levels in field corn (Zea mays L.) with laser induced fluorescence," Remote Sens. Environ. 47, 36-44 (1994).
[CrossRef]

A. Ounis, Z. Cerovic, J. Briantais, and I. Moya, "Dual-Ex FLIDAR for the estimation of epidermal UV absorption in leaves and canopies," Remote Sens. Environ. 76, 33-48 (2001).
[CrossRef]

A. Rosema, J. Snel, H. Zahn, W. Buurmeijer, and L. Van Hove, "The relation between laser-induced chlorophyll fluorescence and photosynthesis," Remote Sens. Environ. 65, 143-154 (1998).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, and V. Raimondi, "Remote sensing of chlorophyll a fluorescence on vegetation canopies. 2. Physiological significance of fluorescence signal in response to environmental stresses," Remote Sens. Environ. 47, 29-35 (1992).
[CrossRef]

L. Corp, J. McMurtrey, E. Chappelle, C. Daughtry, and M. Kim, "UV band fluorescence (in vivo) and its applications to the remote assessment of N fertilization level," Remote Sens. Environ. 61, 110-117 (1997).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. De Angelis, "Remote sensing of chlorophyll-a fluorescence of vegetation canopies. 1. Near and far field measurement techniques," Remote Sens. Environ. 47, 18-28 (1994).
[CrossRef]

P. Zarco-Tejada, J. Pushnik, S. Dobrowski, and S. Ustin, "Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects," Remote Sens. Environ. 84, 283-294 (2003).
[CrossRef]

C. Daughtry, E. Hunt, and J. McMurtrey, "Assessing crop residue cover using shortwave infrared reflectance," Remote Sens. Environ. 90, 126-134 (2004).
[CrossRef]

Rev. Sci. Instrum.

P. Kebabian, A. Theisen, S. Kallelis, and A. Freedman, "A passive two-band sensor of sunlight-excited plant fluorescence," Rev. Sci. Instrum. 70, 4386-4393 (1975).
[CrossRef]

Scand. J. Res.

G. Mohammed, W. Binder, and S. Gillies, "Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation," Scand. J. Res. 10, 383-410 (1995).
[CrossRef]

Other

J. McMurtrey, E. Middleton, L. Corp, P. Campbell, L. Butcher, E. Chappelle, and W. Cook, "Fluorescence responses from nitrogen plant stress in 4 Fraunhofer band regions," in 2002 IEEE International Geoscience and Remote Sensing Symposium (Institute of Electrical and Electronics, 2002), pp. 1538-1540.

A. Theisen, "Detecting chlorophyll fluorescence from orbit: the Fraunhofer line depth model," in From Laboratory Spectroscopy to Remote Sensor Spectra of Terrestrial Ecosystems, R. S. Muttiah, ed. (Springer, 2002), pp. 203-232.

C. Moore, M. Minnaert, and J. Houtgast, The Solar Spectrum 2935 Delta to 8770 Delta: Second Revision of Rowland's Preliminary Table of Solar Spectrum Wavelengths, Natl. Bur. Stand. (U.S.) Monogr. 61 (1966).
[PubMed]

P. Mazzinghi, G. Cecchi, R. Guzzi, V. Bratina, A. Zuccaro, and L. Gambicorti, "Feasibility of active remote sensing of vegetation fluorescence from space," presented at the 2nd International Workshop on Remote Sensing of Vegetation Fluorescence, Montreal, Canada, 17-19 November 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral profiles: (a) xenon arc lamp, (b) solar spectrum at a total irradiance level of 400 W / m 2 .

Fig. 2
Fig. 2

Radiance measured in the red through far-red spectral region. Telluric O 2 bands are denoted with dotted lines, and a, b, c, and d correspond to points in Eqs. (1) and (2) for the FLD determination of far-red SIF.

Fig. 3
Fig. 3

Generalized vegetation spectral EEM represented by a surface plot, based on the responses from mature, summer foliage for two herbaceous and three woody plant species ( n = 20 ) .

Fig. 4
Fig. 4

ChlF intensity from intact leaves (solid curve), extracted from the EEM shown in Fig. 3, varies as a function of EX wavelength. This EX spectrum originates from the primary plant pigment Chl a (dashed curve) but is also affected by light absorptions from the secondary pigments Chl b (dashed–dotted) and carotene (dashed–dotted–dotted).

Fig. 5
Fig. 5

Selection of discrete wavelengths from EX spectra led to the development of dual EX ratios for the in vivo determination of Chl a : b , based on F properties.

Fig. 6
Fig. 6

SIF EM spectrum with dashed lines indicating the position of select Fraunhofer features.

Tables (4)

Tables Icon

Table 1 Effects of Treatment on Biophysical Measures of Plant Growth and Condition

Tables Icon

Table 2 Mean EX by EM Wavelengths (nm) for EEM Maxima, across Five Plant Species

Tables Icon

Table 3 Comparison of Steady-State ChlF Techniques for Vegetation Assessment

Tables Icon

Table 4 Simulated SIF in Fraunhofer Solar Lines as Determined from Leaf EX Spectra a

Equations (188)

Equations on this page are rendered with MathJax. Learn more.

( O 2 )
758 nm
( CO 2 )
CO 2
( O 2 )
760 nm
O 2
O 2
0.001 M
0 kg N / ha
140 kg N / ha
220 W / m 2
393 mm
181 W / m 2
175 W / m 2
0.22 m
1200   grooves / mm
450 W
2 mm
3.2 nm
700 nm
400 800 nm
2 mm
3.2 nm
5 nm
400 800 nm
300 700 nm
5 nm
300 nm
20 nm
1660 μmol m - 2 s - 1
400 W m - 2 nm - 1
( mW m - 2 nm - 1 )
300 nm
20 nm
( mW m - 2 sr - 1 )
O 2
O 2
760 nm
7 nm
R = ( c d ) / ( a b ) ,
F = d R b = ( a d c b ) / ( a b ) ,
O 2
( f = F / a )
1 m
3 nm
1.4 nm
O 2
1660 μmol m - 2 s - 1
μmol CO 2 m - 2 s - 1
2000 μmol m - 2 s - 1
CO 2
10 6
( 35 % )
700 nm
( 2.54 cm 2 )
3.5 ml
1 mm
p 0.05
140 kg N / ha
70 kg N / ha
0.27
LSD 0.05
a : b
C : N
1.68 ( LSD 0.05 )
C : N
a : b
CO 2
347 ± 25 nm
410 ± 10 nm
665 nm
10 nm
25 nm
( 11 nm )
740 nm
a : b
a : b
a : b
ND RF = ( RF EX 435 RF EX 475 ) / ( RF EX 435 + RF EX 475 ) ,
ND FRF = ( FRF EX 435 FRF EX 475 ) / ( FRF EX 435 + FRF EX 475 ) .
475 nm
a : b
r 2 = 0.81 0.83
a : b
500 nm
758.6 nm
( mW m - 2 nm - 1 sr - 1 )
542 nm
0.368 nm
0.0157 mW m - 2 sr - 1
0.1397 mW m - 2 sr - 1
758 nm
H β
486 nm
Mg
518 nm
H α
656 nm
Fe I
751 nm
280 kg N / ha
500 nm
650 nm
500 nm
( r 2 = 0.83 )
( r 2 = 0.81 )
O 2
760 nm
36 mW m - 2 nm - 1 sr - 1
> 3
36 mW m - 2 nm - 1 sr - 1
17 mW m - 2 nm - 1 sr - 1
1 5 mW m - 2 nm - 1 sr - 1
4 10 mW m - 2 nm - 1 sr - 1
O 2
O 2
355 nm
475 nm
a / b
a / b
H β
486 nm
H α
656 nm
0.1 mW m - 2 nm - 1 sr - 1
0.037 mW m - 2 sr - 1
H β
O 2
760 nm
O 2
O 2
O 2
680 nm
5 mW m - 2 nm - 1 sr - 1
740 nm
10 mW m - 2 nm - 1 sr - 1
H α
656.28 nm
Fe I
751.1 nm
H β
486 nm
347 ± 25
410 ± 10 nm
430 ± 10
472 ± 8
665 ± 8
a : b
735 nm
LSD 0.05 ( n = 60 )
LSD 0.05 ( n = 66 )
LSD 0.05 ( n = 48 )
ANOVA LSD 0.05
5 nm
F s
LSD 0.05 ( n = 60 )
LSD 0.05 ( n = 66 )
LSD 0.05 ( n = 48 )
( RF + FRF )
ANOVA LSD 0.05
λ ( nm )
( Δλ )
Ca I
H γ
Fe I
H β
Mg I
Mg I
Fe I
F e I
Fe I
H α
Fe I
Ni I
F e I
Fe I
Ca I
Si I
Ca I
F e I
Fe I
Fe I
Fe I
400 W / m 2
O 2
( n = 20 )
a : b

Metrics