Abstract

The results of experimental determination of multimode strip waveguide refractive index profiles and Ag concentration profiles obtained by using the variable wavefront shear double-refracting interferometry microinterferometer Biolar PI and an electron microprobe are presented. The strip waveguides under investigation are formed in soda lime glass in an external electric-field-assisted Ag+–Na+ ion-exchange process from the molten AgNO3 salt by use of dielectric masks with channel apertures. A dry electrochemical technique of dielectric mask formation is applied. The influence of waveguide-forming parameters on the shape of Ag concentration profiles and the range of silver diffusion are shown. Changes in the usually assumed boundary conditions of electric-field calculations in ion-exchange numerical modeling are suggested.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
    [CrossRef]
  2. A. Belkhir, "A comparative study of silver diffusion in a glass substrate for optical waveguide applications," IEEE J. Quantum Electron. 35, 306-311 (1999).
    [CrossRef]
  3. A. Tervonen, S. Honkanen, and S. I. Najafi, "Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30- and 1.55-µm dual wavelength demultiplexers/multiplexers," Opt. Eng. 32, 2083-2090 (1993).
    [CrossRef]
  4. R. G. Walker, C. D. W. Wilkinson, and J. A. H. Wilkinson, "Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation," Appl. Opt. 22, 1923-1935 (1983).
    [CrossRef] [PubMed]
  5. R. G. Walker and C. D. W. Wilkinson, "Integrated optical waveguiding structures made by silver ion-exchange in glass. 2: Directional coupler and bends," Appl. Opt. 22, 1929-1936 (1983).
    [CrossRef] [PubMed]
  6. B. Pantchev, Z. Nikolov, and E. Voges, "Coupling efficiency in ion-exchanged homogeneous refracting waveguide lenses in glass," Opt. Commun. 135, 247-250 (1997).
    [CrossRef]
  7. V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
    [CrossRef]
  8. A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
    [CrossRef]
  9. J. Albert and J. W. Y. Lit, "Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides," Appl. Opt. 29, 2798-2804 (1990).
    [CrossRef] [PubMed]
  10. B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
    [CrossRef]
  11. H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
    [CrossRef]
  12. A. Tervonen, S. Honkanen, and M. Leppihalme, "Control of ion-exchanged waveguide profiles with Ag thin-film sources," J. Appl. Phys. 62, 759-763 (1987).
    [CrossRef]
  13. T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
    [CrossRef]
  14. R. Goring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
    [CrossRef]
  15. M. Pluta, Advanced Light Microscopy, Volume 3, Measuring Techniques (PWN-Polish Scientific Publishers, 1993).
  16. M. Pluta, "A double-refracting interference microscope with continuously variable amount and direction of wavefront shear," Opt. Acta 18, 661-675 (1971).
    [CrossRef]
  17. M. Bozyk, "Optical methods in lightguide metrology," Int. J. Optoelectron. 4, 241-256 (1989).
  18. E. Mrozek and P. Mrozek, "Thin dielectric electrodiffusion masks for Ag+-Na+ ion exchange applications," J. Tech. Phys. 44, 289-294 (2003).
  19. T. Kaneko, "The field-assisted penetration of a silver film into glass," J. Non-Cryst. Solids 120, 188-198 (1990).
    [CrossRef]
  20. R. V. Ramaswamy, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1001 (1988).
    [CrossRef]

2004

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

2003

E. Mrozek and P. Mrozek, "Thin dielectric electrodiffusion masks for Ag+-Na+ ion exchange applications," J. Tech. Phys. 44, 289-294 (2003).

2000

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

1999

A. Belkhir, "A comparative study of silver diffusion in a glass substrate for optical waveguide applications," IEEE J. Quantum Electron. 35, 306-311 (1999).
[CrossRef]

1997

B. Pantchev, Z. Nikolov, and E. Voges, "Coupling efficiency in ion-exchanged homogeneous refracting waveguide lenses in glass," Opt. Commun. 135, 247-250 (1997).
[CrossRef]

1995

V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
[CrossRef]

1993

A. Tervonen, S. Honkanen, and S. I. Najafi, "Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30- and 1.55-µm dual wavelength demultiplexers/multiplexers," Opt. Eng. 32, 2083-2090 (1993).
[CrossRef]

1990

A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
[CrossRef]

T. Kaneko, "The field-assisted penetration of a silver film into glass," J. Non-Cryst. Solids 120, 188-198 (1990).
[CrossRef]

J. Albert and J. W. Y. Lit, "Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides," Appl. Opt. 29, 2798-2804 (1990).
[CrossRef] [PubMed]

1989

M. Bozyk, "Optical methods in lightguide metrology," Int. J. Optoelectron. 4, 241-256 (1989).

1988

R. V. Ramaswamy, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1001 (1988).
[CrossRef]

1987

A. Tervonen, S. Honkanen, and M. Leppihalme, "Control of ion-exchanged waveguide profiles with Ag thin-film sources," J. Appl. Phys. 62, 759-763 (1987).
[CrossRef]

1986

R. Goring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

1983

1982

H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
[CrossRef]

1972

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

1971

M. Pluta, "A double-refracting interference microscope with continuously variable amount and direction of wavefront shear," Opt. Acta 18, 661-675 (1971).
[CrossRef]

Albert, J.

Belkhir, A.

A. Belkhir, "A comparative study of silver diffusion in a glass substrate for optical waveguide applications," IEEE J. Quantum Electron. 35, 306-311 (1999).
[CrossRef]

Bozyk, M.

M. Bozyk, "Optical methods in lightguide metrology," Int. J. Optoelectron. 4, 241-256 (1989).

Francois, V.

V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
[CrossRef]

Goring, R.

R. Goring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

Honkanen, S.

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

A. Tervonen, S. Honkanen, and S. I. Najafi, "Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30- and 1.55-µm dual wavelength demultiplexers/multiplexers," Opt. Eng. 32, 2083-2090 (1993).
[CrossRef]

A. Tervonen, S. Honkanen, and M. Leppihalme, "Control of ion-exchanged waveguide profiles with Ag thin-film sources," J. Appl. Phys. 62, 759-763 (1987).
[CrossRef]

Itoh, K.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Izawa, T.

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

Kaneko, T.

T. Kaneko, "The field-assisted penetration of a silver film into glass," J. Non-Cryst. Solids 120, 188-198 (1990).
[CrossRef]

Lavers, C. R.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Leppihalme, M.

A. Tervonen, S. Honkanen, and M. Leppihalme, "Control of ion-exchanged waveguide profiles with Ag thin-film sources," J. Appl. Phys. 62, 759-763 (1987).
[CrossRef]

Lilienhof, H.

H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
[CrossRef]

Lit, J. W. Y.

Madasamy, P.

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

Mauchline, I.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Mrozek, E.

E. Mrozek and P. Mrozek, "Thin dielectric electrodiffusion masks for Ag+-Na+ ion exchange applications," J. Tech. Phys. 44, 289-294 (2003).

Mrozek, P.

E. Mrozek and P. Mrozek, "Thin dielectric electrodiffusion masks for Ag+-Na+ ion exchange applications," J. Tech. Phys. 44, 289-294 (2003).

Murabayashi, M.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Najafi, S. I.

V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
[CrossRef]

A. Tervonen, S. Honkanen, and S. I. Najafi, "Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30- and 1.55-µm dual wavelength demultiplexers/multiplexers," Opt. Eng. 32, 2083-2090 (1993).
[CrossRef]

Nakagome, H.

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

Nikolov, Z.

B. Pantchev, Z. Nikolov, and E. Voges, "Coupling efficiency in ion-exchanged homogeneous refracting waveguide lenses in glass," Opt. Commun. 135, 247-250 (1997).
[CrossRef]

Ohtsuki, T.

V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
[CrossRef]

Pantchev, B.

B. Pantchev, Z. Nikolov, and E. Voges, "Coupling efficiency in ion-exchanged homogeneous refracting waveguide lenses in glass," Opt. Commun. 135, 247-250 (1997).
[CrossRef]

Pantschew, B.

H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
[CrossRef]

Peyghambarian, N.

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
[CrossRef]

Pluta, M.

M. Pluta, "A double-refracting interference microscope with continuously variable amount and direction of wavefront shear," Opt. Acta 18, 661-675 (1971).
[CrossRef]

M. Pluta, Advanced Light Microscopy, Volume 3, Measuring Techniques (PWN-Polish Scientific Publishers, 1993).

Ramaswamy, R. V.

R. V. Ramaswamy, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1001 (1988).
[CrossRef]

Ritter, D.

H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
[CrossRef]

Rothhardt, M.

R. Goring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

Stewart, G.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Stout, T.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Tervonen, A.

A. Tervonen, S. Honkanen, and S. I. Najafi, "Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30- and 1.55-µm dual wavelength demultiplexers/multiplexers," Opt. Eng. 32, 2083-2090 (1993).
[CrossRef]

A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
[CrossRef]

A. Tervonen, S. Honkanen, and M. Leppihalme, "Control of ion-exchanged waveguide profiles with Ag thin-film sources," J. Appl. Phys. 62, 759-763 (1987).
[CrossRef]

Voges, E.

B. Pantchev, Z. Nikolov, and E. Voges, "Coupling efficiency in ion-exchanged homogeneous refracting waveguide lenses in glass," Opt. Commun. 135, 247-250 (1997).
[CrossRef]

H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
[CrossRef]

Walker, R. G.

West, B. R.

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

Wilkinson, C. D. W.

Wilkinson, J. A. H.

Wu, S. C.

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Izawa and H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
[CrossRef]

IEEE J. Quantum Electron.

A. Belkhir, "A comparative study of silver diffusion in a glass substrate for optical waveguide applications," IEEE J. Quantum Electron. 35, 306-311 (1999).
[CrossRef]

H. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, "Field-induced index profiles of multimode ion-exchanged strip waveguides," IEEE J. Quantum Electron. QE-18, 1877-1883 (1982).
[CrossRef]

Int. J. Optoelectron.

M. Bozyk, "Optical methods in lightguide metrology," Int. J. Optoelectron. 4, 241-256 (1989).

J. Appl. Phys.

A. Tervonen, S. Honkanen, and M. Leppihalme, "Control of ion-exchanged waveguide profiles with Ag thin-film sources," J. Appl. Phys. 62, 759-763 (1987).
[CrossRef]

A. Tervonen, "A general model for fabrication processes of channel waveguides by ion exchange," J. Appl. Phys. 67, 2746-2752 (1990).
[CrossRef]

J. Lightwave Technol.

R. V. Ramaswamy, "Ion-exchanged glass waveguides: a review," J. Lightwave Technol. 6, 984-1001 (1988).
[CrossRef]

J. Non-Cryst. Solids

T. Kaneko, "The field-assisted penetration of a silver film into glass," J. Non-Cryst. Solids 120, 188-198 (1990).
[CrossRef]

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, "Modeling of ion-exchanged glass waveguide structures," J. Non-Cryst. Solids 347, 18-26 (2004).
[CrossRef]

J. Opt. Commun.

R. Goring and M. Rothhardt, "Application of the refracted near-field technique to multimode planar and channel waveguides in glass," J. Opt. Commun. 7, 82-85 (1986).
[CrossRef]

J. Tech. Phys.

E. Mrozek and P. Mrozek, "Thin dielectric electrodiffusion masks for Ag+-Na+ ion exchange applications," J. Tech. Phys. 44, 289-294 (2003).

Opt. Acta

M. Pluta, "A double-refracting interference microscope with continuously variable amount and direction of wavefront shear," Opt. Acta 18, 661-675 (1971).
[CrossRef]

Opt. Commun.

B. Pantchev, Z. Nikolov, and E. Voges, "Coupling efficiency in ion-exchanged homogeneous refracting waveguide lenses in glass," Opt. Commun. 135, 247-250 (1997).
[CrossRef]

V. Francois, T. Ohtsuki, N. Peyghambarian, and S. I. Najafi, "Thermally silver ion exchanged integrated-optic lasers in neodymium-doped silicate glass," Opt. Commun. 119, 104-108 (1995).
[CrossRef]

Opt. Eng.

A. Tervonen, S. Honkanen, and S. I. Najafi, "Analysis of symmetric directional couplers and asymmetric Mach-Zehnder interferometers as 1.30- and 1.55-µm dual wavelength demultiplexers/multiplexers," Opt. Eng. 32, 2083-2090 (1993).
[CrossRef]

Sens. Actuators B

C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sens. Actuators B 69, 85-95 (2000).
[CrossRef]

Other

M. Pluta, Advanced Light Microscopy, Volume 3, Measuring Techniques (PWN-Polish Scientific Publishers, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Photolithographic process of metallic Al mask preparation: (a) Al vacuum evaporation, (b) photoresist deposition, (c) UV exposure, (d) photoresist developing, (e) Al etching, (f) photoresist removal in acetone.

Fig. 2
Fig. 2

Schematic diagram of dielectric mask formation in Al mask–glass bonding area.

Fig. 3
Fig. 3

Schematic diagram of a system used in the electric-field-assisted Ag + –Na + ion-exchange process.

Fig. 4
Fig. 4

Top view of the strip waveguide with the transparent dielectric mask present on the top surface of the glass slab (differential interference contrast image, print magnification of 200 × ).

Fig. 5
Fig. 5

Schematic of cross-sectional slab orientation relative to the strip waveguide axes directions.

Fig. 6
Fig. 6

Schematic for the preparation of strip waveguide cross-section sample: (a) cut of a wafer with a polished front surface, (b) polishing of the opposite surface of the sample.

Fig. 7
Fig. 7

FFI image of a cross section of a strip waveguide: a is the maximum distortion of the zero-order fringe, b is the interfringe spacing; a and b were measured after image magnification (in monochrome light with λ = 602 nm , print magnification of 600 × ).

Fig. 8
Fig. 8

UFI image of a cross section of a strip waveguide in white light illumination (print magnification of 600 × ).

Fig. 9
Fig. 9

Schematic for the positioning of the two wavefronts of the splitted image (A–A cross section in Fig. 8) for contour line determination: solid curve, the wavefront of the object in the first image; dashed curves, the consecutive positions of the plane wavefront of the empty field in the second image.

Fig. 10
Fig. 10

Scanning electron microscope image of a half of the strip waveguide cross section with the point traces of electron microprobe data acquisition (print magnification of 1000 × ).

Fig. 11
Fig. 11

Graph of C Ag / C Ag max (solid curve, approximation) and Δ n / Δ n max (dashed curve, approximation) as a function of the distance y from the surface of the strip waveguide. Crosses, electron microprobe measurement points; stars, refractive index optical measurement points.

Fig. 12
Fig. 12

Ag concentration contour lines of 0.9 C Ag max , 0.8 C Ag max , 0.6 C Ag max , 0.4 C Ag max , 0.2 C Ag max , 0.0 C Ag max , and, respectively, refractive index contour lines of n glass + 0.9 Δ n , n glass + 0.8 Δ n , n glass + 0.6 Δ n , n glass + 0.4 Δ n , n glass + 0.2 Δ n , and n glass (in the direction to the inside of glass; C Ag max = 5.6 % mole , n glass = 1.51 , Δ n = 0.08 ). The process parameters of waveguide formation: temperature T = 628 K , time t = 10 min , glass thickness h = 1,5 mm , mask aperture width d = 85 µm , and voltage: (a) U = 10 V , (b) U = 20 V , (c) U = 30 V .

Fig. 13
Fig. 13

Ag concentration contour lines of 0.9 C Ag max , 0.8 C Ag max , 0.6 C Ag max , 0.4 C Ag max , 0.2 C Ag max , 0.0 C Ag max , and, respectively, refractive index contour lines of n glass + 0.9 Δ n , n glass + 0.8 Δ n , n glass + 0.6 Δ n , n glass + 0.4 Δ n , n glass + 0.2 Δ n , and n glass (in the direction to the inside of glass; C Ag max = 5.6 % mole , n glass = 1.51 , Δ n = 0.08 ). The process parameters of waveguide formation: voltage U = 20 V , time t = 10 min , glass thickness h = 1,5 mm , mask aperture width d = 33 µm , and temperature: (a) T = 588 K , (b) T = 628 K , (c) T = 653 K .

Fig. 14
Fig. 14

Ag concentration contour lines of 0.9 C Ag max , 0.8 C Ag max , 0.6 C Ag max , 0.4 C Ag max , 0.2 C Ag max , 0.0 C Ag max , and, respectively, refractive index contour lines of n glass + 0.9 Δ n , n glass + 0.8 Δ n , n glass + 0.6 Δ n , n glass + 0.4 Δ n , n glass + 0.2 Δ n , and n glass (in the direction to the inside of glass; C Ag max = 5.6 % mole , n glass = 1.51 , Δ n = 0.08 ). The process parameters of waveguide formation: voltage U = 20 V , temperature T = 628 K , glass thickness h = 1,5 mm , mask aperture width d = 142 µm , and time: (a) t = 5 min , (b) t = 10 min , (c) t = 15 min .

Fig. 15
Fig. 15

Ag concentration contour lines of 0.9 C Ag max , 0.8 C Ag max , 0.6 C Ag max , 0.4 C Ag max , 0.2 C Ag max , 0.0 C Ag max , and, respectively, refractive index contour lines of n glass + 0.9 Δ n , n glass + 0.8 Δ n , n glass + 0.6 Δ n , n glass + 0.4 Δ n , n glass + 0.2 Δ n , and n glass (in the direction to the inside of glass; C Ag max = 5.6 % mole , n glass = 1.51 , Δ n = 0.08 ). The process parameters of waveguide formation: voltage U = 20 V , time t = 10 min , glass thickness h = 1,5 mm , mask aperture width d = 85 µm , temperature T = 628 K , and glass thickness: (a) h = 1.5 mm , (b) h = 1.0 mm .

Equations (240)

Equations on this page are rendered with MathJax. Learn more.

Ag
Ag + –Na +
AgNO 3
Ag
Ag + –Na +
Ag
Ag
Δδ
λ / 20
λ / 50
Δ n
Δ ( Δ n )
10 - 3
Δ n
Δ ( Δ n )
10 - 3 10 - 4
1 µm
1.5 mm
SiO 2 71.0 72.0
Al 2 O 3 1.5 3.0
Na 2 O 16.0 18.0
CaO 7.2 8.5
K 2 O
20 × 20 mm
373 K
H 2 O : H 2 O 2 ( 30 % ) : NH 4 OH ( 27 % )
7 : 2 : 1
0.5 µm
10 - 5
142 µm
3500 rpm
373 K
Ag
Ag + –Na +
773 K
Ar
100 V
Al 3 +
Al 3 +
Al 2 O 3
Al 2 O 3
Ag + –Na +
AgNO 3
Ag +
AgNO 3
Ag
h = 1.5 mm
U = 20 V
t = 10 min
653 K
h = 1.5 mm
t = 10 min
T = 628 K
30 V
h = 1.5 mm
U = 20 V
T = 628 K
T = 628 K
t = 10 min
U = 20 V
1.5 mm
1.0 mm
142 µm
Ag
10 20 µm
Δ n
1 mm
10 20 µm
δ max i
δ max i = h i Δ n max ,
h i
Δ n max
Ag + –Na +
δ max i
δ max i
δ max i
δ max i
δ max i = ( a i / b i ) λ ,
a i
b i
λ = 602 nm
0.9 δ max i
0.8 δ max i
0.6 δ max i
0.4     δ max i
0.2     δ max i
0.0     δ max i
δ max i
h i
δ max i
n glass
n glass = Δ n max i
n glass
Δ n max
Δ n max
Δ n max
δ max
Δ n max
Δ n max = δ max / h .
Δ n max = 0.08
δ max
n glass = 1.51
n min = 1.51
n max = 1.59
Δ n
Ag
C Ag
Ag
U = 30 V
T = 628 K
t = 10 min
h = 1.5 mm
d = 142 µm
15 kV
Ag
C Ag = 5.6 % mole
Ag
C Ag / C Ag max
Δ n / Δ n max
Ag
Ag
C Ag min = 0 %
C Ag max = 5.6 % mole
Ag + –Na +
AgNO 3
Ag + –Na +
Δ n max = 0.08
n min = 1.51
n max = 1.59
Δ n
Ag
C Ag
Ag
C Ag min = 0 mol %
C Ag max = 5.6 % mole
Ag
Ag
1.55 - µm
Ag
Ag + –Na +
Ag + –Na +
200 ×
λ = 602 nm
600 ×
600 ×
1000 ×
C Ag / C Ag max
Δ n / Δ n max
Ag
0.9 C Ag max
0.8 C Ag max
0.6 C Ag max
0.4 C Ag max
0.2 C Ag max
0.0 C Ag max
n glass + 0.9 Δ n
n glass + 0.8 Δ n
n glass + 0.6 Δ n
n glass + 0.4 Δ n
n glass + 0.2 Δ n
n glass
C Ag max = 5.6 % mole
n glass = 1.51
Δ n = 0.08
T = 628 K
t = 10 min
h = 1,5 mm
d = 85 µm
U = 10 V
U = 20 V
U = 30 V
Ag
0.9 C Ag max
0.8 C Ag max
0.6 C Ag max
0.4 C Ag max
0.2 C Ag max
0.0 C Ag max
n glass + 0.9 Δ n
n glass + 0.8 Δ n
n glass + 0.6 Δ n
n glass + 0.4 Δ n
n glass + 0.2 Δ n
n glass
C Ag max = 5.6 % mole
n glass = 1.51
Δ n = 0.08
U = 20 V
t = 10 min
h = 1,5 mm
d = 33 µm
T = 588 K
T = 628 K
T = 653 K
Ag
0.9 C Ag max
0.8 C Ag max
0.6 C Ag max
0.4 C Ag max
0.2 C Ag max
0.0 C Ag max
n glass + 0.9 Δ n
n glass + 0.8 Δ n
n glass + 0.6 Δ n
n glass + 0.4 Δ n
n glass + 0.2 Δ n
n glass
C Ag max = 5.6 % mole
n glass = 1.51
Δ n = 0.08
U = 20 V
T = 628 K
h = 1,5 mm
d = 142 µm
t = 5 min
t = 10 min
t = 15 min
Ag
0.9 C Ag max
0.8 C Ag max
0.6 C Ag max
0.4 C Ag max
0.2 C Ag max
0.0 C Ag max
n glass + 0.9 Δ n
n glass + 0.8 Δ n
n glass + 0.6 Δ n
n glass + 0.4 Δ n
n glass + 0.2 Δ n
n glass
C Ag max = 5.6 % mole
n glass = 1.51
Δ n = 0.08
U = 20 V
t = 10 min
h = 1,5 mm
d = 85 µm
T = 628 K
h = 1.5 mm
h = 1.0 mm

Metrics