Abstract

Single-shot thermometry with dual-broadband rotational coherent anti-Stokes Raman spectroscopy that employs amplified spontaneous emission from a broadband modeless dye laser has been examined. Evaluation of single-shot spectra of air, N2,    and    O2 showed an improved temperature precision at room temperature compared with the precision obtained with a conventional dye laser. A comparison was also made between the use of single-mode and multimode Nd:YAG lasers as sources for narrowband radiation, and in all cases the single-mode Nd:YAG laser resulted in higher precision. The experimental results are compared with theoretical predictions.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noise in single-shot broadband coherent anti-Stokes Raman spectroscopy that employs a modeless dye laser

D. R. Snelling, R. A. Sawchuk, and T. Parameswaran
Appl. Opt. 33(36) 8295-8301 (1994)

Multiplex H2 coherent anti-Stokes Raman scattering thermometry with a modeless laser

Clemens F. Kaminski and Paul Ewart
Appl. Opt. 36(3) 731-734 (1997)

Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser

Jae Won Hahn, Chul Woung Park, and Seung Nam Park
Appl. Opt. 36(27) 6722-6728 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription