Abstract

This paper presents a new approach to fringe pattern profilometry. In this paper, a generalized model describing the relationship between the projected fringe pattern and the deformed fringe pattern is derived, in which the projected fringe pattern can be arbitrary rather than being limited to being sinusoidal, as are those for the conventional approaches. Based on this model, what is believed to be a new approach is proposed to reconstruct the three-dimensional object surface by estimating the shift between the projected and deformed fringe patterns. Additionally, theoretical analysis, computer simulation, and experimental results are presented, which show how the proposed approach can significantly improve the measurement accuracy, especially when the fringe patterns are distorted by unknown factors.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Discrete cosine transform-based shift estimation for fringe pattern profilometry using a generalized analysis model

Yingsong Hu, Jiangtao Xi, Joe Chicharo, Enbang Li, and Zongkai Yang
Appl. Opt. 45(25) 6560-6567 (2006)

Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns

Ke Chen, Jiangtao Xi, Yanguang Yu, Sheng Tong, and Qinghua Guo
Appl. Opt. 52(30) 7360-7366 (2013)

3D shape measurement based on projection of triangular patterns of two selected frequencies

Pu Cao, Jiangtao Xi, Yanguang Yu, Qinghua Guo, and Limei Song
Opt. Express 22(23) 29234-29248 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (62)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription