Abstract

We present a simulation with a Lorentz oscillator model to evaluate the accuracy of the extracted optical constants in terahertz transmission spectroscopy. The contributions of various error sources including the deflection of the incident angle, the delay-line timing error, and two other kinds of noises are analyzed. It is revealed that the influence of the deflection angle is an approximate parabolic dependence. The delay-line timing uncertainty introduces an exponential frequency dependence in the deviation of the extinction coefficient and a distinct change in the refractive index data in the resonant region. When background and 1/f noises are introduced, the deviation mainly concentrates in the resonant region.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991).
  2. M. V. Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989).
    [CrossRef] [PubMed]
  3. D. H. Auston and K. P. Cheung, "Coherent time-domain far-infrared spectroscopy," J. Opt. Soc. Am. B 1, 606-612 (1985).
  4. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
    [CrossRef]
  5. M. Schall, H. Helm, and S. R. Keiding, "Far-infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-605 (1999).
    [CrossRef]
  6. T. Kiwa and M. Tonouchi, "High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy," Physica C 362, 314-318 (2001).
  7. A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulse terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000).
    [CrossRef]
  8. B. M. Fischer, M. Walther, and P. Uhd Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002).
    [CrossRef] [PubMed]
  9. P. Uhd Jepsen and B. M. Fischer, "Dynamic range in terahertz time-domain transmission and reflection spectroscopy," Opt. Lett. 30, 29-31 (2005).
    [CrossRef] [PubMed]
  10. M. van Exter and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory and Tech. 38, 1684-1691 (1990).
    [CrossRef]
  11. L. Duvillaret, F. Garet, and J.-L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000).
  12. L. Duvillaret, F. Garet, and J.-L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum Electron. 2, 793-745 (1996).
  13. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, "Material parameter estimation with terahertz time-domain spectroscopy," J. Opt. Soc. Am. A 18, 1562-11570 (2001).
    [CrossRef]
  14. L. Duvillaret, F. Garet, and J.-L. Coutaz, "Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy," Appl. Opt. 38, 409-415 (1998).
    [CrossRef]
  15. H. Sakai, G. A. Vanasse, and M. L. Forman, "Spectral recovery in Fourier spectroscopy," J. Opt. Soc. Am. 58, 84-90 (1968).
    [CrossRef]
  16. L. Palchetti and D. Lastrucci, "Spectral noise due to sampling errors in Fourier-transform spectroscopy," Appl. Opt. 40, 3235-3243 (1998).
    [CrossRef]
  17. R. C. M. Learner, A. P. Thorne, and J. W. Brault, "Ghosts and artifacts in Fourier-transform spectroscopy," Appl. Opt. 35, 2947-2954 (1996).
    [CrossRef] [PubMed]
  18. T.-I. Jeon and D. Grischkowsky, "Characterization of optically dense, doped semiconductors by reflection THz time-domain spectroscopy," Appl. Phys. Lett. 72, 3032-3034 (1998).
    [CrossRef]
  19. J. Son, J. V. Rudd, and J. F. Whitaker, "Noise characterization of a self-mode-locked Ti:sapphire laser," Opt. Lett. 17, 733-735 (1992).
    [CrossRef] [PubMed]
  20. L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
    [CrossRef]
  21. S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
    [CrossRef]
  22. S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
    [CrossRef]
  23. J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
    [CrossRef]

2005 (1)

2003 (1)

J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
[CrossRef]

2002 (2)

B. M. Fischer, M. Walther, and P. Uhd Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002).
[CrossRef] [PubMed]

S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
[CrossRef]

2001 (2)

T. Kiwa and M. Tonouchi, "High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy," Physica C 362, 314-318 (2001).

T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, "Material parameter estimation with terahertz time-domain spectroscopy," J. Opt. Soc. Am. A 18, 1562-11570 (2001).
[CrossRef]

2000 (3)

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000).

A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulse terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

1999 (1)

M. Schall, H. Helm, and S. R. Keiding, "Far-infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-605 (1999).
[CrossRef]

1998 (3)

1996 (2)

R. C. M. Learner, A. P. Thorne, and J. W. Brault, "Ghosts and artifacts in Fourier-transform spectroscopy," Appl. Opt. 35, 2947-2954 (1996).
[CrossRef] [PubMed]

L. Duvillaret, F. Garet, and J.-L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum Electron. 2, 793-745 (1996).

1992 (1)

1990 (2)

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
[CrossRef]

M. van Exter and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory and Tech. 38, 1684-1691 (1990).
[CrossRef]

1989 (1)

1985 (1)

D. H. Auston and K. P. Cheung, "Coherent time-domain far-infrared spectroscopy," J. Opt. Soc. Am. B 1, 606-612 (1985).

1984 (1)

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

1968 (1)

Abbott, D.

S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

Andor, L.

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

Auston, D. H.

D. H. Auston and K. P. Cheung, "Coherent time-domain far-infrared spectroscopy," J. Opt. Soc. Am. B 1, 606-612 (1985).

Baraniuk, R. G.

T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, "Material parameter estimation with terahertz time-domain spectroscopy," J. Opt. Soc. Am. A 18, 1562-11570 (2001).
[CrossRef]

Brault, J. W.

Cheung, K. P.

D. H. Auston and K. P. Cheung, "Coherent time-domain far-infrared spectroscopy," J. Opt. Soc. Am. B 1, 606-612 (1985).

Coutaz, J.-L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000).

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy," Appl. Opt. 38, 409-415 (1998).
[CrossRef]

L. Duvillaret, F. Garet, and J.-L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum Electron. 2, 793-745 (1996).

Dorney, T. D.

T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, "Material parameter estimation with terahertz time-domain spectroscopy," J. Opt. Soc. Am. A 18, 1562-11570 (2001).
[CrossRef]

Duvillaret, L.

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000).

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy," Appl. Opt. 38, 409-415 (1998).
[CrossRef]

L. Duvillaret, F. Garet, and J.-L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum Electron. 2, 793-745 (1996).

Exter, M. V.

Fattinger, C.

Fattinger, Ch.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
[CrossRef]

Fischer, B. M.

P. Uhd Jepsen and B. M. Fischer, "Dynamic range in terahertz time-domain transmission and reflection spectroscopy," Opt. Lett. 30, 29-31 (2005).
[CrossRef] [PubMed]

B. M. Fischer, M. Walther, and P. Uhd Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002).
[CrossRef] [PubMed]

Forman, M. L.

Garet, F.

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000).

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy," Appl. Opt. 38, 409-415 (1998).
[CrossRef]

L. Duvillaret, F. Garet, and J.-L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum Electron. 2, 793-745 (1996).

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, "Characterization of optically dense, doped semiconductors by reflection THz time-domain spectroscopy," Appl. Phys. Lett. 72, 3032-3034 (1998).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
[CrossRef]

M. V. Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989).
[CrossRef] [PubMed]

Grischkowsky, D. R.

M. van Exter and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory and Tech. 38, 1684-1691 (1990).
[CrossRef]

Heilweil, E. J.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulse terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, "Far-infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-605 (1999).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, "Characterization of optically dense, doped semiconductors by reflection THz time-domain spectroscopy," Appl. Phys. Lett. 72, 3032-3034 (1998).
[CrossRef]

Jepsen, P. Uhd

P. Uhd Jepsen and B. M. Fischer, "Dynamic range in terahertz time-domain transmission and reflection spectroscopy," Opt. Lett. 30, 29-31 (2005).
[CrossRef] [PubMed]

B. M. Fischer, M. Walther, and P. Uhd Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002).
[CrossRef] [PubMed]

Keiding, S.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
[CrossRef]

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, "Far-infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-605 (1999).
[CrossRef]

Kiwa, T.

T. Kiwa and M. Tonouchi, "High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy," Physica C 362, 314-318 (2001).

Lastrucci, D.

Learner, R. C. M.

Lörincz, A.

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

Markelz, A. G.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulse terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Mickan, S.

J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

Mittleman, D. M.

T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, "Material parameter estimation with terahertz time-domain spectroscopy," J. Opt. Soc. Am. A 18, 1562-11570 (2001).
[CrossRef]

Munch, J.

S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

Palchetti, L.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991).

Rice, S. A.

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

Roitberg, A.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulse terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Rudd, J. V.

Sakai, H.

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, "Far-infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-605 (1999).
[CrossRef]

Siemion, J.

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

Smith, D. D.

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

Son, J.

Thorne, A. P.

Tonouchi, M.

T. Kiwa and M. Tonouchi, "High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy," Physica C 362, 314-318 (2001).

van Dorn, T.

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
[CrossRef]

M. van Exter and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory and Tech. 38, 1684-1691 (1990).
[CrossRef]

Vanasse, G. A.

Walther, M.

B. M. Fischer, M. Walther, and P. Uhd Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002).
[CrossRef] [PubMed]

Whitaker, J. F.

Xu, J. Z.

J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
[CrossRef]

Yuan, T.

J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
[CrossRef]

Zhang, X.-C.

J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
[CrossRef]

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T.-I. Jeon and D. Grischkowsky, "Characterization of optically dense, doped semiconductors by reflection THz time-domain spectroscopy," Appl. Phys. Lett. 72, 3032-3034 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

A. G. Markelz, A. Roitberg, and E. J. Heilweil, "Pulse terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42-48 (2000).
[CrossRef]

Chin. Phys. Lett. (1)

J. Z. Xu, T. Yuan, S. Mickan, and X.-C. Zhang, "Fundamental limit of spectral in terahertz time-domain spectroscopy," Chin. Phys. Lett. 20, 1266-1268 (2003).
[CrossRef]

Fluct. Noise Lett. (1)

S. Mickan, D. Abbott, J. Munch, and X.-C. Zhang, "Noise reduction in terahertz thin film measurement using double modulated differential technique," Fluct. Noise Lett. 2, R13-R28 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Duvillaret, F. Garet, and J.-L. Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," IEEE J. Sel. Top. Quantum Electron. 2, 793-745 (1996).

IEEE Trans. Microwave Theory and Tech. (1)

M. van Exter and D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory and Tech. 38, 1684-1691 (1990).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

M. Schall, H. Helm, and S. R. Keiding, "Far-infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. Infrared Millim. Waves 20, 595-605 (1999).
[CrossRef]

J. Opt. Soc. Am. (5)

D. H. Auston and K. P. Cheung, "Coherent time-domain far-infrared spectroscopy," J. Opt. Soc. Am. B 1, 606-612 (1985).

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2014 (1990).
[CrossRef]

L. Duvillaret, F. Garet, and J.-L. Coutaz, "Influence of noise on the characterization of materials by terahertz time-domain spectroscopy," J. Opt. Soc. Am. B 17, 452-461 (2000).

T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, "Material parameter estimation with terahertz time-domain spectroscopy," J. Opt. Soc. Am. A 18, 1562-11570 (2001).
[CrossRef]

H. Sakai, G. A. Vanasse, and M. L. Forman, "Spectral recovery in Fourier spectroscopy," J. Opt. Soc. Am. 58, 84-90 (1968).
[CrossRef]

Microelectron. J. (1)

S. Mickan, D. Abbott, J. Munch, X.-C. Zhang, and T. van Dorn, "Analysis of system trade-offs for terahertz imaging," Microelectron. J. 31, 503-514 (2000).
[CrossRef]

Opt. Lett. (3)

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. Uhd Jepsen, "Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy," Phys. Med. Biol. 47, 3807-3814 (2002).
[CrossRef] [PubMed]

Physica (1)

T. Kiwa and M. Tonouchi, "High frequency properties of YBCO thin films diagnosed by time-domain terahertz spectroscopy," Physica C 362, 314-318 (2001).

Rev. Sci. Instrum. (1)

L. Andor, A. Lörincz, J. Siemion, D. D. Smith, and S. A. Rice, "Shot-noise-limited detection scheme for two-beam laser spectroscopies," Rev. Sci. Instrum. 55, 64-67 (1984).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dispersive relations of the refractive index and the extinction coefficient of the Lorentz oscillator for simulation.

Fig. 2
Fig. 2

Input THz wave (solid curve) and output THz wave (dashed curve). The output wave is shifted 5 ps to aid the eyes. The inset plot is the tail of the output THz wave expanded by 550 to show the ripples. The change in amplitude and shape of the output THz wave are caused by the reflection at the surfaces of the sample, the frequency-dependent absorption, and dispersion of the sample.

Fig. 3
Fig. 3

Influence of the deflection angle on the extracted optical constants in the (a) resonant region and (b) off-resonant region.

Fig. 4
Fig. 4

Deviation curve of the (a), (c) extinction coefficient and (b), (d) the refractive index under the influence of the delay-line timing uncertainty with a forward and backward temporal shift of 100 fs, respectively.

Fig. 5
Fig. 5

Deviation curve of the (a) extinction coefficient and (b) the refractive index under the influence of the background noise.

Fig. 6
Fig. 6

Influence of the 1∕f laser noise on the extracted optical constants.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = 4 n ˜ 0 ( ω ) n ˜ 1 ( ω ) cos θ cos β [ n ˜ 0 ( ω ) cos β + n ˜ 1 ( ω ) cos θ ] 2 × ( exp { j [ d n ˜ 1 ( ω ) m n ˜ 0 ( ω ) ] ω c } ) ,
ε ( ω ) = [ n ( ω ) j κ ( ω ) ] 2 = ε + ( ε s ε ) ω 0     2 ω 0     2 ω 2 j Γ 0 ω ,
δ n = poly 1 ( θ , θ 2 ) poly2 ( θ 2 , θ 4 ) ,
δ k = poly3 ( θ , θ 2 ) poly4 ( θ 2 , θ 4 ) ,
F { f ( t t 0 ) } = f ( t t 0 ) e j ω t d t = A ( ω ) exp { j [ ϕ ( ω ) + ω t 0 ] } ,
ϕ ( ω ) + ω t 0 = [ n ( ω ) 1 ] ω d c + arctan [ κ ( ω ) n ( ω ) [ n ( ω ) + 1 ] + κ 2 ( ω ) ] ,
S ( t ) = E THz ( t ) + N B ( t ) + R ( t ) E THz ( t ) ,

Metrics