Abstract

The fabrication of embedded microchannels monolithically integrated with optical waveguides by plasma-enhanced chemical vapor deposition of doped silica glass is reported. Both waveguide ridges and template ridges for microchannel formation are patterned in a single photolithography step. The microchannels are formed within an overlay of borophosphosilicate glass (BPSG), which also serves as the top cladding layer of the silica waveguides. No top sealing of the channels is required. Surface accessible fluid input ports are formed in a BPSG layer, with no additional steps, by appropriate design of template layers. By tightly controlling the refractive index of the waveguide layer and the microchannel-forming layer, fully integrated structures facilitating optical coupling between solid waveguides and liquids segments in various geometries are demonstrated. Applications in liquid-filled photonic device elements for novel nonlinear optical devices and in optical sensors and on-chip spectroscopy are outlined.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
    [CrossRef]
  2. L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).
  3. V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
    [CrossRef]
  4. V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
    [CrossRef]
  5. A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
    [CrossRef]
  6. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems," Appl. Opt. 42, 4072-4079 (2003).
  7. G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
    [CrossRef]
  8. H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).
  9. A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
    [CrossRef]
  10. P. Friis, K. Hoppe, O. Leistiko, K. B. Mogensen, J. Hübner, and J. P. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001).
  11. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).
  12. Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).
  13. A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).
  14. C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
    [CrossRef]
  15. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
    [CrossRef]
  16. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
    [CrossRef]
  17. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).

2006 (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

2005 (4)

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

2004 (4)

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

2003 (2)

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems," Appl. Opt. 42, 4072-4079 (2003).

2001 (1)

1997 (1)

Aitchison, J. S.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Bado, P.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Bellouard, Y.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Berdichevsky, Y.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Birks, T. A.

Blanchetière, C.

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Camou, S.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Cheng, Y.

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

Cleary, A.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Cooper, J. M.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Currie, J. F.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Dugan, M.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Durst, M. E.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

El-Ali, J.

Eldada, L.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Friis, P.

Fujii, T.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Fujita, H.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Fujita, J.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Garcia-Blanco, S.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Glidle, A.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Goel, S.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Grundmann, A.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Guan, G.-L.

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Hoppe, K.

Hübner, J.

Izuhara, T.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Knight, J. C.

Kutter, J. P.

Laybourn, P.

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Lee, G.-B.

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Leeds, A. R.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Leistiko, O.

Lien, V.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Lin, C.-H.

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

Lo, Y.-H.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

Mabesa, J. R.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

McMullen, J. N.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Midorikawa, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

Mogensen, K. B.

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

Paranjape, M.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Qiao, H.

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Radojevic, A.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Reinald, G.

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Russell, P. St. J.

Said, A.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

Said, A. A.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Schneider, T. W.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Scott, A.

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

Sugioka, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

Tixier-Mita, A.

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Van Keuren, E. T.

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Wolff, A.

Zhao, K.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, "High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides," IEEE J. Sel. Top. Quantum Electron. 11, 827-834 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. Lien, Y. Berdichevsky, and Y.-H. Lo, "A prealigned process of integrating optical waveguides with microfluidic devices," IEEE Photon. Technol. Lett. 16, 1525-1527 (2004).
[CrossRef]

IEEE Sens. J. (1)

A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, "An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters," IEEE Sens. J. 5, 1315-1320 (2005).
[CrossRef]

J. Mater. Res. (1)

C. L. Callender, C. J. Ledderhof, P. Dumais, C. Blanchetière, and J. P. Noad, "Fabrication of microchannel arrays in borophosphosilicate glass," J. Mater. Res. 20, 759-764 (2005).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

S. Camou, A. Tixier-Mita, H. Fujita, and T. Fujii, "Integration of microoptics in bio-micro-electro-mechanical systems towards micro-total-analysis systems," Jpn. J. Appl. Phys. Part 1 43, 5697-5705 (2004).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica," Mater. Res. Soc. Symp. Proc. 782, A3.2.1-A3.2.6 (2004).

Opt. Lett. (1)

Photon. Technol. Lett. (2)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-silicon optical sensor based on integrated waveguides and microchannels," Photon. Technol. Lett. 17, 441-443 (2005).
[CrossRef]

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Liquid core modal interferometer integrated with silica waveguides," Photon. Technol. Lett. 18, 746-748 (2006).
[CrossRef]

Sens. Actuators A (2)

G.-B. Lee, C.-H. Lin, and G.-L. Guan, "Micro flow cytometers with buried SU-8/SOG optical waveguides," Sens. Actuators A 103, 165-170 (2003).
[CrossRef]

A. R. Leeds, E. T. Van Keuren, M. E. Durst, T. W. Schneider, J. F. Currie, and M. Paranjape, "Integration of microfluidic and microoptical elements using a single-mask photolithographic step," Sens. Actuators A 115, 571-580 (2004).
[CrossRef]

Other (4)

L. Eldada, A. Radojevic, J. Fujita, T. Izuhara, and G. Reinald, "Advances in hybrid organic/inorganic optoelectronic integration," in Optoelectronic Integrated Circuits VI, Proc. SPIE 5356, 92-106 (2004).

Y. Cheng, K. Sugioka, and K. Midorikawa, "3D integration of microoptics and microfluidics in glass using femtosecond laser direct writing," in Fifth International Symposium on Laser Precision Microfabrication, Proc. SPIE 5662,209-214 (2004).

A. A. Said, M. Dugan, P. Bado, Y. Bellouard, A. Scott, and J. R. Mabesa, Jr., "Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks," in Photon Processing in Microelectronics and Photonics III, Proc. SPIE 5339,194-204 (2004).

H. Qiao, S. Goel, A. Grundmann, and J. N. McMullen, "Biochips with integrated optics and fluidics," in Smart Materials, Structures and Systems, Proc. SPIE 5062,873-878 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics