Abstract

We report a step toward optoelectronic integration on low-temperature cofired ceramics substrates in the form of fiber alignment U-grooves. The precision of the CO2 laser machining of green state ceramic for this purpose is investigated. The groove-writing process with a speed of 1  mm/s was carried out in air at room temperature and ambient pressure. The process is to a large extent self-cleaning without any gas jet assist. By analysis of groove profiles after firing of a near-zero shrinkage green tape formulation, it is shown that the cutting accuracy is approximately 2  μm, which is at the fundamental limit set by the particle size (15μm). We demonstrate low-loss butt coupling of <1  dB for single-mode fibers using the laser written U-grooves. The technique exhibits a potential for fabrication of low-cost fiber ribbon and fiber array connectors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
    [CrossRef]
  2. S. J. Horowitz and D. I. Amey, "Ceramics meet next-generation fiber optic packaging requirements," Photonics Spectra 35, 123-125 (2001).
  3. T. Thelemann, H. Thust, and M. Hintz, "Using LTCC for microsystems," Microelectron. Int. 19, 19-23 (2002).
    [CrossRef]
  4. J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
    [CrossRef]
  5. K. M. Nowak, H. J. Baker, and D. R. Hall, "Cold processing of green state LTCC with a CO2 laser," Appl. Phys. A 84, 267-270 (2006).
    [CrossRef]
  6. K. M. Nowak, H. J. Baker, and D. R. Hall, "Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator," in Proc. SPIE 4941, 107-112 (2002).
    [CrossRef]
  7. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, "Correction of beam errors in high power diode bars and stacks," Opt. Express 14, 8178-8183 (2006).
    [CrossRef] [PubMed]
  8. K. M. Nowak, H. J. Baker, and D. R. Hall, "Efficient laser polishing of silica micro-optic components," Appl. Opt. 45, 162-171 (2006).
    [CrossRef] [PubMed]
  9. H. F. Wolf, Handbook of Fiber Optics: Theory and Applications (Garland Publishing, 1979), pp. 252-265.
  10. M. R. Matthews, B. M. MacDonald, and K. R. Preston, "Optical components-the new challenge in packaging," IEEE Trans. Compon. , Hybrids, Manuf. Technol. 13, 798-806 (1990).
  11. S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
    [CrossRef]
  12. C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
    [CrossRef]
  13. W. H. Cheng, M. T. Sheen, C. P. Chien, H. L. Chang, and J. H. Kuang, "Reduction of fiber alignment shifts in semiconductor laser module packaging," J. Lightwave Technol. 18, 842-848 (2000).
    [CrossRef]
  14. G. J. Shevchuk and M. A. Shahid, "Precision moulding of fibre array connectors: What does it take?" Eng. Plast. 9, 116-125 (1996).
  15. J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
    [CrossRef]
  16. J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
    [CrossRef]
  17. S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

2006 (3)

2005 (1)

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

2004 (3)

S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
[CrossRef]

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
[CrossRef]

2002 (2)

K. M. Nowak, H. J. Baker, and D. R. Hall, "Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator," in Proc. SPIE 4941, 107-112 (2002).
[CrossRef]

T. Thelemann, H. Thust, and M. Hintz, "Using LTCC for microsystems," Microelectron. Int. 19, 19-23 (2002).
[CrossRef]

2001 (2)

M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
[CrossRef]

S. J. Horowitz and D. I. Amey, "Ceramics meet next-generation fiber optic packaging requirements," Photonics Spectra 35, 123-125 (2001).

2000 (2)

J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
[CrossRef]

W. H. Cheng, M. T. Sheen, C. P. Chien, H. L. Chang, and J. H. Kuang, "Reduction of fiber alignment shifts in semiconductor laser module packaging," J. Lightwave Technol. 18, 842-848 (2000).
[CrossRef]

1996 (2)

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

G. J. Shevchuk and M. A. Shahid, "Precision moulding of fibre array connectors: What does it take?" Eng. Plast. 9, 116-125 (1996).

1990 (1)

M. R. Matthews, B. M. MacDonald, and K. R. Preston, "Optical components-the new challenge in packaging," IEEE Trans. Compon. , Hybrids, Manuf. Technol. 13, 798-806 (1990).

Ahlfeldt, H.

J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
[CrossRef]

Amey, D. I.

S. J. Horowitz and D. I. Amey, "Ceramics meet next-generation fiber optic packaging requirements," Photonics Spectra 35, 123-125 (2001).

Armendariz, M. G.

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

Baker, H. J.

K. M. Nowak, H. J. Baker, and D. R. Hall, "Efficient laser polishing of silica micro-optic components," Appl. Opt. 45, 162-171 (2006).
[CrossRef] [PubMed]

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, "Correction of beam errors in high power diode bars and stacks," Opt. Express 14, 8178-8183 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Cold processing of green state LTCC with a CO2 laser," Appl. Phys. A 84, 267-270 (2006).
[CrossRef]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator," in Proc. SPIE 4941, 107-112 (2002).
[CrossRef]

Bauer, T. M.

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

Chan, H. P.

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

Chan, Y. C.

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

Chang, H. L.

Cheng, W. H.

Chien, C. P.

Espinoza-Vallejos, P.

M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
[CrossRef]

Gongora-Rubio, M. R.

M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
[CrossRef]

Hall, D. R.

K. M. Nowak, H. J. Baker, and D. R. Hall, "Cold processing of green state LTCC with a CO2 laser," Appl. Phys. A 84, 267-270 (2006).
[CrossRef]

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, "Correction of beam errors in high power diode bars and stacks," Opt. Express 14, 8178-8183 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Efficient laser polishing of silica micro-optic components," Appl. Opt. 45, 162-171 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator," in Proc. SPIE 4941, 107-112 (2002).
[CrossRef]

Heilala, J.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Hintz, M.

T. Thelemann, H. Thust, and M. Hintz, "Using LTCC for microsystems," Microelectron. Int. 19, 19-23 (2002).
[CrossRef]

Holm, J.

J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
[CrossRef]

Horowitz, S. J.

S. J. Horowitz and D. I. Amey, "Ceramics meet next-generation fiber optic packaging requirements," Photonics Spectra 35, 123-125 (2001).

Karioja, P.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Kautio, K.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Keranen, K.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Kim, Y. S.

J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
[CrossRef]

Kravitz, S. H.

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

Kuang, J. H.

Lee, J. H.

J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
[CrossRef]

Leung, N. W.

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

MacDonald, B. M.

M. R. Matthews, B. M. MacDonald, and K. R. Preston, "Optical components-the new challenge in packaging," IEEE Trans. Compon. , Hybrids, Manuf. Technol. 13, 798-806 (1990).

Makinen, J.-T.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Matthews, M. R.

M. R. Matthews, B. M. MacDonald, and K. R. Preston, "Optical components-the new challenge in packaging," IEEE Trans. Compon. , Hybrids, Manuf. Technol. 13, 798-806 (1990).

Monjardin, J. F.

Nowak, K. M.

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, "Correction of beam errors in high power diode bars and stacks," Opt. Express 14, 8178-8183 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Efficient laser polishing of silica micro-optic components," Appl. Opt. 45, 162-171 (2006).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Cold processing of green state LTCC with a CO2 laser," Appl. Phys. A 84, 267-270 (2006).
[CrossRef]

K. M. Nowak, H. J. Baker, and D. R. Hall, "Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator," in Proc. SPIE 4941, 107-112 (2002).
[CrossRef]

Ou, S. Q.

S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
[CrossRef]

Park, S. R.

J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
[CrossRef]

Preston, K. R.

M. R. Matthews, B. M. MacDonald, and K. R. Preston, "Optical components-the new challenge in packaging," IEEE Trans. Compon. , Hybrids, Manuf. Technol. 13, 798-806 (1990).

Santiago-Aviles, J. J.

M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
[CrossRef]

Seigal, P. K.

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

Shahid, M. A.

G. J. Shevchuk and M. A. Shahid, "Precision moulding of fibre array connectors: What does it take?" Eng. Plast. 9, 116-125 (1996).

Sheen, M. T.

Shevchuk, G. J.

G. J. Shevchuk and M. A. Shahid, "Precision moulding of fibre array connectors: What does it take?" Eng. Plast. 9, 116-125 (1996).

So, C. K.

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

Sola-Laguna, L.

M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
[CrossRef]

Svensson, M.

J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
[CrossRef]

Tan, C. W.

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

Thelemann, T.

T. Thelemann, H. Thust, and M. Hintz, "Using LTCC for microsystems," Microelectron. Int. 19, 19-23 (2002).
[CrossRef]

Thust, H.

T. Thelemann, H. Thust, and M. Hintz, "Using LTCC for microsystems," Microelectron. Int. 19, 19-23 (2002).
[CrossRef]

Tu, K. N.

S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
[CrossRef]

Vaatainen, O.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Vieider, C.

J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
[CrossRef]

Voho, P.

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Wolf, H. F.

H. F. Wolf, Handbook of Fiber Optics: Theory and Applications (Garland Publishing, 1979), pp. 252-265.

Word, J. C.

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

Xu, G.

S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
[CrossRef]

Xu, Y. H.

S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
[CrossRef]

Yang, S. H.

J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

K. M. Nowak, H. J. Baker, and D. R. Hall, "Cold processing of green state LTCC with a CO2 laser," Appl. Phys. A 84, 267-270 (2006).
[CrossRef]

Assem. Autom. (1)

J. Heilala, K. Keranen, J.-T. Makinen, O. Vaatainen, K. Kautio, P. Voho, and P. Karioja, "LTCC technology for cost-effective packaging of photonic modules," Assem. Autom. 25, 30-37 (2005).
[CrossRef]

Ceram. Int. (1)

S. Q. Ou, G. Xu, Y. H. Xu, and K. N. Tu, "Optical fiber packaging by lead (Pb)-free solder in V-grooves," Ceram. Int. 30, 1115-1119 (2004).
[CrossRef]

Eng. Plast. (1)

G. J. Shevchuk and M. A. Shahid, "Precision moulding of fibre array connectors: What does it take?" Eng. Plast. 9, 116-125 (1996).

IEEE Trans. Compon. (2)

S. H. Kravitz, J. C. Word, T. M. Bauer, P. K. Seigal, and M. G. Armendariz, "A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging- The CLASP concept," IEEE Trans. Compon. , Packag. Manuf. Technol. Part B 19, 83-89 (1996).

M. R. Matthews, B. M. MacDonald, and K. R. Preston, "Optical components-the new challenge in packaging," IEEE Trans. Compon. , Hybrids, Manuf. Technol. 13, 798-806 (1990).

J. Lightwave Technol. (1)

J. Mater. Process. Technol. (1)

J. H. Lee, S. R. Park, S. H. Yang, and Y. S. Kim, "Fabrication of a V groove on the optical fiber connector using a miniaturized machine tool," J. Mater. Process. Technol. 155-156, 1716-1722 (2004).
[CrossRef]

Microelectron. Int. (1)

T. Thelemann, H. Thust, and M. Hintz, "Using LTCC for microsystems," Microelectron. Int. 19, 19-23 (2002).
[CrossRef]

Microelectron. Reliab. (1)

C. W. Tan, Y. C. Chan, H. P. Chan, N. W. Leung, and C. K. So, "Investigation on bondability and reliability of UV-curable adhesive joints for stable mechanical properties in photonic device packaging," Microelectron. Reliab. 44, 823-831 (2004).
[CrossRef]

Opt. Express (1)

Photonics Spectra (1)

S. J. Horowitz and D. I. Amey, "Ceramics meet next-generation fiber optic packaging requirements," Photonics Spectra 35, 123-125 (2001).

Proc. SPIE (1)

K. M. Nowak, H. J. Baker, and D. R. Hall, "Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator," in Proc. SPIE 4941, 107-112 (2002).
[CrossRef]

Sens. Actuators (2)

M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, "Overview of low temperature cofired ceramics tape technology for mesosystem technology (MsST)," Sens. Actuators , A 89, 222-241 (2001).
[CrossRef]

J. Holm, H. Ahlfeldt, M. Svensson, and C. Vieider, "Through-etched silicon carriers for passive alignment of optical fibers to surface-active optoelectronic components," Sens. Actuators , A 82, 245-248 (2000).
[CrossRef]

Other (1)

H. F. Wolf, Handbook of Fiber Optics: Theory and Applications (Garland Publishing, 1979), pp. 252-265.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the laser processing facility used for the fabrication of fiber alignment U-grooves.

Fig. 2
Fig. 2

Typical machining curve of HeraLock HL2000 (CL91-8242) green tape obtained in two modes of constant irradiance ( 1   MW / cm 2 ) and constant pulse duration ( 100 μ s ) at a spotsize of 141 μ m . Note the linearity of the characteristics.

Fig. 3
Fig. 3

Ideal groove depth and the roughness of the groove bed as functions of the crater overlap. The craters are Gaussian with unity 1∕e diameter and depth. The overlap is the separation between the crater centers. Roughness R a is expressed as a fraction of groove depth. Groove cross sections (not to scale) are in the inset. A unit crater is included for reference.

Fig. 4
Fig. 4

Results of the search for an optimal set of groove cutting conditions in HL2000 tape (before cleaning with compressed air). (a) Axial groove depth and (b) groove bed roughness R a are plotted versus pulse fluence, with crater spacing as a parameter.

Fig. 5
Fig. 5

Comparison of normalized experimental data with a groove formation model. Good agreement with the model is evident.

Fig. 6
Fig. 6

Comparison of the groove [ 40 μ m / 45   J / cm 2 ] profiles (a) as-cut, (b) following subsequent cleaning with compressed air, and (c) after firing. Apart from the usual shrinkage experienced by the material the surface quality also improved significantly. The dimensions in micrometers.

Fig. 7
Fig. 7

Comparison of green and fired cross sections of grooves cut with 40 μm crater separation and fluences of (a) 35, (b) 45, and (c) 55   J / cm 2 . An adjustment of ± 15 μ m core position is achieved by pulse energy adjustment.

Fig. 8
Fig. 8

Shrinkage cross section mapped versus depth of green material found by comparing the groove profiles before and after firing. The constraining action of the internal sandwich layer of the green tape HL2000 is clearly visible.

Fig. 9
Fig. 9

Theoretical calculation (based on formulas in Ref. [9]) of three primary components of coupling loss for single-mode fiber, lateral core offset, angular misalignment, and core separation, listed in order of importance. Fresnel losses are drawn in for a reference. Lateral core offset has the greatest impact of coupling efficiency, core separation the least.

Fig. 10
Fig. 10

Experimental setup for measurement of coupling losses. Two cleaved fiber ends were positioned over the groove by XYZ manipulators and, the fiber facets were brought into contact, clamped by a weight of a 4 m m × 25   mm piece of glass slide, and subsequently the coupling loss was measured.

Fig. 11
Fig. 11

Images of butt-coupled single-mode fibers in the [ 40 μ m / 45   J / cm 2 ] U-grooves. A left-hand side fiber has been removed in image 13 to reveal the groove bed. Field of view is 300 μ m .

Tables (3)

Tables Icon

Table 1 Comparison of Quality Figures of Unfired and Fired Grooves [ 40 μ m / 45   J / cm 2 ] a

Tables Icon

Table 2 Loss Measurement Calculation for Grooves [40 μm∕45 J∕cm2] a

Tables Icon

Table 3 Comparison of Coupling Performance of Grooves Cut with 40 and 50 μm Crater Separation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R a = 1 n i = 1 n | Z i Z ¯ | ,

Metrics