Abstract

TiO2―Ta2O5 composite films were prepared by a radio frequency ion-beam sputtering deposition process, and the refractive indices and extinction coefficients of the composite films were found to be between those of the TiO2 and Ta2O5 films. The structure of the as-deposited films was amorphous, and the surface roughness was approximately 0.1  nm. The residual stress of the composite films was less than that of pure TiO2 film. The structure of the composite films after annealing was amorphous, with low surface roughness and slightly increased residual stress. The film containing 6.3% TiO2 displayed better properties than either the pure TiO2 or the pure Ta2O5 film.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Wang and S. Chao, "Annealing effect on ion-beam-sputtered titanium dioxide film," Opt. Lett. 23, 1417-1419 (1998).
    [CrossRef]
  2. J. C. Hsu and C. C. Lee, "Single- and dual-ion-beamsputter deposition of titanium oxide films," Appl. Opt. 37, 1171-1176 (1998).
    [CrossRef]
  3. C. C. Lee, H. C. Chen, and C. C. Jaing, "Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition," Appl. Opt. 44, 2996-3009 (2005).
    [CrossRef] [PubMed]
  4. L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
    [CrossRef]
  5. M. R. Kozlowski, "Damage-resistant laser coating," in Thin Films for Optical System, F. R. Flory, ed. (Dekker, 1995), pp. 521-549.
  6. S. Chao, W. H. Wang, M. Y. Hsu, and L. C. Wang, "Characteristics of ion-beam-sputtered high refractive index TiO2-SiO2 mixed films," J. Opt. Soc. Am. A 16, 1477-1483 (1999).
    [CrossRef]
  7. S. Chao, W. H. Wang, and C. C. Lee, "Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO2 mixed films," Appl. Opt. 40, 2177-2182 (2001).
    [CrossRef]
  8. E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
    [CrossRef]
  9. H. Sankur, W. J. Gunning, and J. F. DeNatale, "Intrinsic stress and structural properties of mixed composition thin film," Appl. Opt. 27, 1564-1567 (1988).
    [CrossRef] [PubMed]
  10. B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, "Stress reduction in ion beam sputtered mixed oxide films," Appl. Opt. 28, 2800-2805 (1989).
    [CrossRef] [PubMed]
  11. S. Chao, C. K. Chang, and J. S. Chen, "TiO2-SiO2 mixed films prepared by the fast alternating sputter method," Appl. Opt. 30, 3233-3237 (1991).
    [CrossRef] [PubMed]
  12. J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, "Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation," Appl. Opt. 35, 90-96 (1996).
    [CrossRef] [PubMed]
  13. T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
    [CrossRef]
  14. M. Veszelei, L. Kullman, C. G. Granqvist, N. von Rottkay, and M. Rubin, "Optical constants of sputter-deposited Ti-Ce oxide and Zr-Ce oxide films," Appl. Opt. 37, 5993-6001 (1998).
    [CrossRef]
  15. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
    [CrossRef]
  16. A. Ritz, "TaTiOx layers prepared by magnetron sputtering from separate metal targets," Surf. Coat. Technol. 174-175, 651-654 (2003).
    [CrossRef]
  17. M. Cevro, "Ion-beam sputtering of (Ta2O5)x-(SiO2)1−x composite thin films," Thin Solid Films 258, 91-103 (1995).
    [CrossRef]
  18. C. C. Lee, C. J. Tang, and J. Y. Wu, "Rugate filter made with composite thin films by ion-beam sputtering," Appl. Opt. 45, 1333-1337 (2006).
    [CrossRef] [PubMed]
  19. J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film," J. Phys. E 9, 1002-1004 (1976).
    [CrossRef]
  20. G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. London Ser. A 82, 172-175 (1909).
    [CrossRef]
  21. J. Chastain and R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, 1995), pp. 44-45, 72-73, and 170-171.
  22. D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, 2001).
  23. D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
    [CrossRef]
  24. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous materials," Appl. Opt. 20, 26-30 (1981).
    [CrossRef] [PubMed]
  25. H. Windischmann, "An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering," J. Appl. Phys. 62, 1800-1807 (1987).
    [CrossRef]

2006 (1)

2005 (1)

2003 (1)

A. Ritz, "TaTiOx layers prepared by magnetron sputtering from separate metal targets," Surf. Coat. Technol. 174-175, 651-654 (2003).
[CrossRef]

2001 (1)

2000 (1)

T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
[CrossRef]

1999 (2)

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

S. Chao, W. H. Wang, M. Y. Hsu, and L. C. Wang, "Characteristics of ion-beam-sputtered high refractive index TiO2-SiO2 mixed films," J. Opt. Soc. Am. A 16, 1477-1483 (1999).
[CrossRef]

1998 (3)

1996 (1)

1995 (1)

M. Cevro, "Ion-beam sputtering of (Ta2O5)x-(SiO2)1−x composite thin films," Thin Solid Films 258, 91-103 (1995).
[CrossRef]

1991 (1)

1989 (1)

1988 (1)

1987 (1)

H. Windischmann, "An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering," J. Appl. Phys. 62, 1800-1807 (1987).
[CrossRef]

1986 (2)

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
[CrossRef]

1982 (1)

D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

1981 (1)

1976 (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film," J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

1909 (1)

G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. London Ser. A 82, 172-175 (1909).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Carniglia, C. K.

Cevro, M.

M. Cevro, "Ion-beam sputtering of (Ta2O5)x-(SiO2)1−x composite thin films," Thin Solid Films 258, 91-103 (1995).
[CrossRef]

Chang, C. K.

Chao, S.

Chen, C. H.

Chen, H. C.

Chen, J. S.

DeBar, J. I.

DeNatale, J. F.

Farabaugh, N.

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

Feldman, E.

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film," J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film," J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Granqvist, C. G.

Gunning, W. J.

Hahn, S. H.

T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
[CrossRef]

Haller, W. K.

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

Hirai, T.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

Hsu, J. C.

Hsu, L. S.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
[CrossRef]

Hsu, M. Y.

Hunderi, O.

Jaing, C. C.

Kao, J. S.

Kim, E. J.

T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
[CrossRef]

Kim, S. W.

T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
[CrossRef]

Kozlowski, M. R.

M. R. Kozlowski, "Damage-resistant laser coating," in Thin Films for Optical System, F. R. Flory, ed. (Dekker, 1995), pp. 521-549.

Kullman, L.

Lee, C. C.

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film," J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

Masumoto, H.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

Niklasson, G. A.

Niu, H.

Pond, B. J.

Raj, T.

Ritz, A.

A. Ritz, "TaTiOx layers prepared by magnetron sputtering from separate metal targets," Surf. Coat. Technol. 174-175, 651-654 (2003).
[CrossRef]

Rubin, M.

Rujkorakarn, R.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
[CrossRef]

Ryu, T. U.

T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
[CrossRef]

Sanders, D. M.

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

Sankur, H.

She, C. Y.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
[CrossRef]

Sites, J. R.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
[CrossRef]

Someno, Y.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

Stempniak, R. A.

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

Stoney, G. G.

G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. London Ser. A 82, 172-175 (1909).
[CrossRef]

Tang, C. J.

Veszelei, M.

von Rottkay, N.

Wang, L. C.

Wang, W. H.

Wang, X.

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

Windischmann, H.

H. Windischmann, "An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering," J. Appl. Phys. 62, 1800-1807 (1987).
[CrossRef]

Wu, J. Y.

Am. J. Phys. (1)

D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective," Am. J. Phys. 50, 704-709 (1982).
[CrossRef]

Appl. Opt. (10)

G. A. Niklasson, C. G. Granqvist, and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous materials," Appl. Opt. 20, 26-30 (1981).
[CrossRef] [PubMed]

C. C. Lee, C. J. Tang, and J. Y. Wu, "Rugate filter made with composite thin films by ion-beam sputtering," Appl. Opt. 45, 1333-1337 (2006).
[CrossRef] [PubMed]

J. C. Hsu and C. C. Lee, "Single- and dual-ion-beamsputter deposition of titanium oxide films," Appl. Opt. 37, 1171-1176 (1998).
[CrossRef]

C. C. Lee, H. C. Chen, and C. C. Jaing, "Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition," Appl. Opt. 44, 2996-3009 (2005).
[CrossRef] [PubMed]

S. Chao, W. H. Wang, and C. C. Lee, "Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO2 mixed films," Appl. Opt. 40, 2177-2182 (2001).
[CrossRef]

H. Sankur, W. J. Gunning, and J. F. DeNatale, "Intrinsic stress and structural properties of mixed composition thin film," Appl. Opt. 27, 1564-1567 (1988).
[CrossRef] [PubMed]

B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, "Stress reduction in ion beam sputtered mixed oxide films," Appl. Opt. 28, 2800-2805 (1989).
[CrossRef] [PubMed]

S. Chao, C. K. Chang, and J. S. Chen, "TiO2-SiO2 mixed films prepared by the fast alternating sputter method," Appl. Opt. 30, 3233-3237 (1991).
[CrossRef] [PubMed]

J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, "Mixed films of TiO2-SiO2 deposited by double electron-beam coevaporation," Appl. Opt. 35, 90-96 (1996).
[CrossRef] [PubMed]

M. Veszelei, L. Kullman, C. G. Granqvist, N. von Rottkay, and M. Rubin, "Optical constants of sputter-deposited Ti-Ce oxide and Zr-Ce oxide films," Appl. Opt. 37, 5993-6001 (1998).
[CrossRef]

J. Appl. Phys. (2)

L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, "Thermally induced crystallization of amorphous-titania films," J. Appl. Phys. 59, 3475-3480 (1986).
[CrossRef]

H. Windischmann, "An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering," J. Appl. Phys. 62, 1800-1807 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. E (1)

J. C. Manifacier, J. Gasiot, and J. P. Fillard, "A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film," J. Phys. E 9, 1002-1004 (1976).
[CrossRef]

J. Vac. Sci. Technol. A (1)

E. Feldman, N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, "Modifying structure and properties of optical films by coevaporation," J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
[CrossRef]

Opt. Eng. (1)

T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, "Optical, mechanical, and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by coevaporation," Opt. Eng. 39, 3207-3213 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. London Ser. A (1)

G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proc. R. Soc. London Ser. A 82, 172-175 (1909).
[CrossRef]

Surf. Coat. Technol. (1)

A. Ritz, "TaTiOx layers prepared by magnetron sputtering from separate metal targets," Surf. Coat. Technol. 174-175, 651-654 (2003).
[CrossRef]

Thin Solid Films (2)

M. Cevro, "Ion-beam sputtering of (Ta2O5)x-(SiO2)1−x composite thin films," Thin Solid Films 258, 91-103 (1995).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

Other (3)

M. R. Kozlowski, "Damage-resistant laser coating," in Thin Films for Optical System, F. R. Flory, ed. (Dekker, 1995), pp. 521-549.

J. Chastain and R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, 1995), pp. 44-45, 72-73, and 170-171.

D. R. Lide, CRC Handbook of Chemistry and Physics, 82nd ed. (CRC Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of the rf ion-beam sputtering deposition system.

Fig. 2
Fig. 2

Schematic of a Ti―Ta target. The sputtering area is shadowed.

Fig. 3
Fig. 3

Refractive index versus wavelength for different target positions.

Fig. 4
Fig. 4

Extinction coefficient versus wavelength for different target positions.

Fig. 5
Fig. 5

XPS spectra of the (a) Ti 2p, (b) Ta 4f and (c) O 1s energy regions.

Fig. 6
Fig. 6

Composite films with different TiO 2 fractions versus the refractive indices at a wavelength of 550   nm .

Fig. 7
Fig. 7

X-ray intensity distribution versus (a) annealing temperature of the TiO 2 film and (b) composite films for different target positions and annealed at 400 ° C .

Fig. 8
Fig. 8

Refractive index versus annealing temperature for different target positions.

Fig. 9
Fig. 9

Extinction coefficient versus annealing temperature for different target positions.

Fig. 10
Fig. 10

Surface roughness versus annealing temperature for different target positions.

Fig. 11
Fig. 11

Surface morphology of (a) TiO 2 film annealed at 300 ° C and (b) composite film with the target position at 5 cm and annealed at 350   ° C .

Fig. 12
Fig. 12

Changes in thickness with annealing temperature for different target positions.

Fig. 13
Fig. 13

SEM cross section to determine the physical thickness of (a) as-deposited film and (b) film annealed at 400   ° C .

Fig. 14
Fig. 14

Residual stress versus annealing temperature for different target positions.

Tables (1)

Tables Icon

Table 1 Composition Ratio of TiO2 for Different Target Positions and the Least-Squares-Fit Evaluation for Each Model a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ f = E S t S 2 6 ( 1 ν S ) t f R ,
n f 2 = f TiO 2 n TiO 2 2 + f Ta 2 O 5 n Ta 2 O 5 2 ,
f TiO 2 n TiO 2 2 n f 2 n TiO 2 2 + 2 n f 2 + f Ta 2 O 5 n Ta 2 O 5 2 n f 2 n Ta 2 O 5 2 + 2 n f 2 = 0 ,
n f 2 = f TiO 2 n TiO 2 2 1 n TiO 2 2 + 2 + f Ta 2 O 5 n Ta 2 O 5 2 1 n Ta 2 O 5 2 + 2 ,
n f 2 = ( f TiO 2 n TiO 2 2 + f Ta 2 O 5 n Ta 2 O 5 2 ) 1 ,
Δ Q = All   sample ( f experimental f model ) 2 .

Metrics