Y. Cai and Q. Lin, "Fractional Fourier transform for elliptical Gaussian beams," Opt. Commun. 217, 7-13 (2003).

[CrossRef]

A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional transformations in optics," Prog. Opt. 38, 263-342 (1998).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their optical implementation: I," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transforms and their optical implementation: II," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

A. W. Lohmann, "Image rotation, Wigner rotation, and the fractional Fourier transform," J. Opt. Soc. Am. A 10, 2181-2186 (1993).

[CrossRef]

J. Alda, S. Wang, and E. Bernabeu, "Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams," Opt. Commun. 80, 350-352 (1991).

[CrossRef]

J. J. Wen and M. A. Breazeale, "A diffraction beam field expressed as the superposition of Gaussian beams," J. Acoust. Soc. Am. 83, 1752-1756 (1988).

[CrossRef]

A. C. McBride and F. H. Kerr, "On Namias's fractional Fourier transform," IMA J. Appl. Math. 39, 159-175 (1987).

[CrossRef]

V. Namias, "The fractional order Fourier transform and its applications to quantum mechanics," J. Inst. Math. Appl. 25, 241-265 (1980).

[CrossRef]

J. Alda, S. Wang, and E. Bernabeu, "Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams," Opt. Commun. 80, 350-352 (1991).

[CrossRef]

J. Alda, S. Wang, and E. Bernabeu, "Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams," Opt. Commun. 80, 350-352 (1991).

[CrossRef]

J. J. Wen and M. A. Breazeale, "A diffraction beam field expressed as the superposition of Gaussian beams," J. Acoust. Soc. Am. 83, 1752-1756 (1988).

[CrossRef]

Y. Cai and Q. Lin, "Fractional Fourier transform for elliptical Gaussian beams," Opt. Commun. 217, 7-13 (2003).

[CrossRef]

A. C. McBride and F. H. Kerr, "On Namias's fractional Fourier transform," IMA J. Appl. Math. 39, 159-175 (1987).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

Y. Cai and Q. Lin, "Fractional Fourier transform for elliptical Gaussian beams," Opt. Commun. 217, 7-13 (2003).

[CrossRef]

A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional transformations in optics," Prog. Opt. 38, 263-342 (1998).

[CrossRef]

A. W. Lohmann, "Image rotation, Wigner rotation, and the fractional Fourier transform," J. Opt. Soc. Am. A 10, 2181-2186 (1993).

[CrossRef]

A. C. McBride and F. H. Kerr, "On Namias's fractional Fourier transform," IMA J. Appl. Math. 39, 159-175 (1987).

[CrossRef]

A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional transformations in optics," Prog. Opt. 38, 263-342 (1998).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their optical implementation: I," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transforms and their optical implementation: II," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

V. Namias, "The fractional order Fourier transform and its applications to quantum mechanics," J. Inst. Math. Appl. 25, 241-265 (1980).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their optical implementation: I," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transforms and their optical implementation: II," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

J. Alda, S. Wang, and E. Bernabeu, "Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams," Opt. Commun. 80, 350-352 (1991).

[CrossRef]

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).

J. J. Wen and M. A. Breazeale, "A diffraction beam field expressed as the superposition of Gaussian beams," J. Acoust. Soc. Am. 83, 1752-1756 (1988).

[CrossRef]

A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional transformations in optics," Prog. Opt. 38, 263-342 (1998).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

X. Du and D. Zhao, "Propagation of decentered elliptical Gaussian beams in apertured and nonsymmetrical optical systems," J. Opt. Soc. Am. A 23, 625-631 (2006).

[CrossRef]

X. Du and D. Zhao, "Propagation of elliptical Gaussian beams in apertured and misaligned optical systems," J. Opt. Soc. Am. A 23, 1946-1950 (2006).

[CrossRef]

H. Mao and D. Zhao, "Different models for a hard-aperture function and corresponding approximate analytical propagation equations of a Gaussian beam through an apertured optical system," J. Opt. Soc. Am. A 22, 647-653 (2005).

[CrossRef]

Z. Mei and D. Zhao, "Propagation of Laguerre-Gaussian and elegant Laguerre-Gaussian beams in apertured fractional Hankel transform systems," J. Opt. Soc. Am. A 21, 2375-2381 (2004).

[CrossRef]

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).

A. C. McBride and F. H. Kerr, "On Namias's fractional Fourier transform," IMA J. Appl. Math. 39, 159-175 (1987).

[CrossRef]

J. J. Wen and M. A. Breazeale, "A diffraction beam field expressed as the superposition of Gaussian beams," J. Acoust. Soc. Am. 83, 1752-1756 (1988).

[CrossRef]

V. Namias, "The fractional order Fourier transform and its applications to quantum mechanics," J. Inst. Math. Appl. 25, 241-265 (1980).

[CrossRef]

D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their optical implementation: I," J. Opt. Soc. Am. A 10, 1875-1881 (1993).

[CrossRef]

H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transforms and their optical implementation: II," J. Opt. Soc. Am. A 10, 2522-2531 (1993).

[CrossRef]

A. W. Lohmann, "Image rotation, Wigner rotation, and the fractional Fourier transform," J. Opt. Soc. Am. A 10, 2181-2186 (1993).

[CrossRef]

Z. Mei and D. Zhao, "Propagation of Laguerre-Gaussian and elegant Laguerre-Gaussian beams in apertured fractional Hankel transform systems," J. Opt. Soc. Am. A 21, 2375-2381 (2004).

[CrossRef]

X. Du and D. Zhao, "Propagation of decentered elliptical Gaussian beams in apertured and nonsymmetrical optical systems," J. Opt. Soc. Am. A 23, 625-631 (2006).

[CrossRef]

X. Du and D. Zhao, "Propagation of elliptical Gaussian beams in apertured and misaligned optical systems," J. Opt. Soc. Am. A 23, 1946-1950 (2006).

[CrossRef]

H. Mao and D. Zhao, "Different models for a hard-aperture function and corresponding approximate analytical propagation equations of a Gaussian beam through an apertured optical system," J. Opt. Soc. Am. A 22, 647-653 (2005).

[CrossRef]

Y. Cai and Q. Lin, "Fractional Fourier transform for elliptical Gaussian beams," Opt. Commun. 217, 7-13 (2003).

[CrossRef]

J. Alda, S. Wang, and E. Bernabeu, "Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams," Opt. Commun. 80, 350-352 (1991).

[CrossRef]

A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional transformations in optics," Prog. Opt. 38, 263-342 (1998).

[CrossRef]

H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).

S. Wang and D. Zhao, Matrix Optics (CHEP-Springer, 2000).