Abstract

We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a ±200  με range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.5  με at 2.4 kHz. We present results of this technique extended to measure the dynamic differential strain between two FBG pairs within a multicore fiber. An arbitrary cantilever oscillation of the multicore fiber was determined from curvature measurements in two orthogonal axes at 1125 Hz with a resolution of 0.05m1.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Tay, M. Thakur, and C. Quan, "Grating projection system for surface contour measurement," Appl. Opt. 44, 1393-1400 (2005).
    [CrossRef] [PubMed]
  2. V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
    [CrossRef]
  3. P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
    [CrossRef]
  4. A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
    [CrossRef]
  5. X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
    [CrossRef]
  6. S. Baek, Y. Jeong, and B. Lee, "Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors," Appl. Opt. 41, 631-636 (2002).
    [CrossRef] [PubMed]
  7. F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
    [CrossRef]
  8. D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, "Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber," Appl. Opt. 43, 5425-5428 (2004).
    [CrossRef] [PubMed]
  9. H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
    [CrossRef]
  10. F. M. Araújo, L.A. Ferreira, and J. L. Santos, "Simultaneous determination of curvature, plane of curvature, and temperature by use of a miniaturized sensing head based on fiber Bragg gratings," Appl. Opt. 41, 2401-2407 (2002).
    [CrossRef] [PubMed]
  11. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, "Two-axis bend measurement with Bragg gratings in multicore optical fiber," Opt. Lett. 28, 387-389 (2003).
    [CrossRef] [PubMed]
  12. Y. Sano and T. Yoshino, "Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors," J. Lightwave Technol. 21, 132-139 (2003).
    [CrossRef]
  13. J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

2005 (1)

2004 (2)

D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, "Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber," Appl. Opt. 43, 5425-5428 (2004).
[CrossRef] [PubMed]

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

2003 (2)

2002 (3)

2001 (3)

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

2000 (1)

H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

Araújo, F. M.

F. M. Araújo, L.A. Ferreira, and J. L. Santos, "Simultaneous determination of curvature, plane of curvature, and temperature by use of a miniaturized sensing head based on fiber Bragg gratings," Appl. Opt. 41, 2401-2407 (2002).
[CrossRef] [PubMed]

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Baek, S.

Barton, J. S.

Bennion, I.

Chen, X. F.

Coe, P. A.

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

Djordjevich, A.

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Dong, X.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Dubowsky, S.

V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
[CrossRef]

Farahi, F.

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Ferreira, L. A.

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Ferreira, L.A.

Flockhart, G. M. H.

Fung, M.

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Fung, R. Y. K.

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Gai, G.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Gere, J. M.

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

Howell, D. F.

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

Jeong, Y.

Jones, J. D. C.

Lee, B.

Lui, Z.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

MacPherson, W. N.

Meng, H.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Nickerson, R. B.

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

Patrick, H.

H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

Quan, C.

Sano, Y.

Santos, J. L.

F. M. Araújo, L.A. Ferreira, and J. L. Santos, "Simultaneous determination of curvature, plane of curvature, and temperature by use of a miniaturized sensing head based on fiber Bragg gratings," Appl. Opt. 41, 2401-2407 (2002).
[CrossRef] [PubMed]

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Sujan, V. A.

V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
[CrossRef]

Tay, C. J.

Thakur, M.

Timoshenko, S. P.

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

Yoshino, T.

Zhang, L.

Zhao, D. H.

Zhou, K. M.

Appl. Opt. (4)

Electron. Lett. (1)

H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (3)

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Opt. Eng. (1)

V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
[CrossRef]

Opt. Lett. (1)

Smart Mater. Struct. (1)

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Other (1)

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Modeled spectra of 4 AWG channels and 1 FBG strain sensor.

Fig. 2
Fig. 2

Logarithmic ratio (channel 3∕channel 2) as a function of FBG center wavelength.

Fig. 3
Fig. 3

Schematic arrangement of optical system.

Fig. 4
Fig. 4

(a) Cantilever deflection against log AWG channel ratio, with third-order polynomial fit. (b) Deflection derived from third-order fit versus deflection measured by LVDT. Residuals are shown in the lower plot.

Fig. 5
Fig. 5

(a) Dynamic response of FBG on freely vibrating cantilever. (b) FBG vibration data on expanded time scale, sampling rate 2   kHz .

Fig. 6
Fig. 6

Strain measurement on piezoelectric cylinder surface driven at 1.1   kHz .

Fig. 7
Fig. 7

Same as Fig. 6 for a drive frequency of 2.4   kHz .

Fig. 8
Fig. 8

Cross section of MCF.

Fig. 9
Fig. 9

Reflection spectra of gratings in MCF.

Fig. 10
Fig. 10

Differential curvature measurement using two cores of MCF.

Fig. 11
Fig. 11

AWG interrogation of multicore FBGs embedded in a simple cantilever. FBG is located close to the cantilever support and for simplicity, the interrogation scheme is shown for only one of the four cores.

Fig. 12
Fig. 12

(a) x deflection of cantilever measured using the sensor plotted against the directly measured deflection in x. (b) y deflection of cantilever measured using the sensor plotted against the directly measured deflection in y.

Fig. 13
Fig. 13

Plane of cantilever vibration from high-speed camera image data.

Fig. 14
Fig. 14

x and y dynamic ringdown of MCF FBGs inside cantilever tube.

Fig. 15
Fig. 15

(a) Sequence of images from high-speed camera at 4 ms intervals. Circles show corresponding sensor measurement. (b) Upper plot, x deflection measured by MCF FBGs (solid curve) and camera (x). Lower plot, y deflection measured by sensor (solid curve) and camera (○).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ i ( λ B ) = ln I i + 1 I i ,
R = d ε 1 ε 2 ,
[ ε 1 ε 2 ] = [ c 1 c 2 c 3 c 4 c 5 c 6 ] [ x y 1 ] ,

Metrics