Abstract

We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a ±200  με range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.5  με at 2.4 kHz. We present results of this technique extended to measure the dynamic differential strain between two FBG pairs within a multicore fiber. An arbitrary cantilever oscillation of the multicore fiber was determined from curvature measurements in two orthogonal axes at 1125 Hz with a resolution of 0.05m1.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Tay, M. Thakur, and C. Quan, "Grating projection system for surface contour measurement," Appl. Opt. 44, 1393-1400 (2005).
    [CrossRef] [PubMed]
  2. V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
    [CrossRef]
  3. P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
    [CrossRef]
  4. A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
    [CrossRef]
  5. X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
    [CrossRef]
  6. S. Baek, Y. Jeong, and B. Lee, "Characteristics of short-period blazed fiber Bragg gratings for use as macro-bending sensors," Appl. Opt. 41, 631-636 (2002).
    [CrossRef] [PubMed]
  7. F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
    [CrossRef]
  8. D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, "Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber," Appl. Opt. 43, 5425-5428 (2004).
    [CrossRef] [PubMed]
  9. H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
    [CrossRef]
  10. F. M. Araújo, L.A. Ferreira, and J. L. Santos, "Simultaneous determination of curvature, plane of curvature, and temperature by use of a miniaturized sensing head based on fiber Bragg gratings," Appl. Opt. 41, 2401-2407 (2002).
    [CrossRef] [PubMed]
  11. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, "Two-axis bend measurement with Bragg gratings in multicore optical fiber," Opt. Lett. 28, 387-389 (2003).
    [CrossRef] [PubMed]
  12. Y. Sano and T. Yoshino, "Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors," J. Lightwave Technol. 21, 132-139 (2003).
    [CrossRef]
  13. J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

2005

2004

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

D. H. Zhao, X. F. Chen, K. M. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, "Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber," Appl. Opt. 43, 5425-5428 (2004).
[CrossRef] [PubMed]

2003

2002

2001

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

2000

H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

Araújo, F. M.

F. M. Araújo, L.A. Ferreira, and J. L. Santos, "Simultaneous determination of curvature, plane of curvature, and temperature by use of a miniaturized sensing head based on fiber Bragg gratings," Appl. Opt. 41, 2401-2407 (2002).
[CrossRef] [PubMed]

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Baek, S.

Barton, J. S.

Bennion, I.

Chen, X. F.

Coe, P. A.

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

Djordjevich, A.

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Dong, X.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Dubowsky, S.

V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
[CrossRef]

Farahi, F.

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Ferreira, L. A.

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Ferreira, L.A.

Flockhart, G. M. H.

Fung, M.

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Fung, R. Y. K.

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Gai, G.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Gere, J. M.

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

Howell, D. F.

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

Jeong, Y.

Jones, J. D. C.

Lee, B.

Lui, Z.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

MacPherson, W. N.

Meng, H.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Nickerson, R. B.

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

Patrick, H.

H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

Quan, C.

Sano, Y.

Santos, J. L.

F. M. Araújo, L.A. Ferreira, and J. L. Santos, "Simultaneous determination of curvature, plane of curvature, and temperature by use of a miniaturized sensing head based on fiber Bragg gratings," Appl. Opt. 41, 2401-2407 (2002).
[CrossRef] [PubMed]

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

Sujan, V. A.

V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
[CrossRef]

Tay, C. J.

Thakur, M.

Timoshenko, S. P.

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

Yoshino, T.

Zhang, L.

Zhao, D. H.

Zhou, K. M.

Appl. Opt.

Electron. Lett.

H. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fiber," Electron. Lett. 36, 1763-1764 (2000).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, "Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings," Meas. Sci. Technol. 12, 829-833 (2001).
[CrossRef]

P. A. Coe, D. F. Howell, and R. B. Nickerson, "Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment," Meas. Sci. Technol. 15, 2175-2187 (2004).
[CrossRef]

A. Djordjevich, M. Fung, and R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
[CrossRef]

Opt. Eng.

V. A. Sujan and S. Dubowsky, "Design and implementation of a 3-D mapping system for highly irregular shaped objects with application to semiconductor manufacturing," Opt. Eng. 41, 1406-1417 (2002).
[CrossRef]

Opt. Lett.

Smart Mater. Struct.

X. Dong, H. Meng, Z. Lui, G. Gai, and X. Dong, "Bend measurement with chirp of fiber Bragg grating," Smart Mater. Struct. 10, 1111-1113 (2001).
[CrossRef]

Other

J. M. Gere and S. P. Timoshenko, Mechanics of Materials (PWS, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Modeled spectra of 4 AWG channels and 1 FBG strain sensor.

Fig. 2
Fig. 2

Logarithmic ratio (channel 3∕channel 2) as a function of FBG center wavelength.

Fig. 3
Fig. 3

Schematic arrangement of optical system.

Fig. 4
Fig. 4

(a) Cantilever deflection against log AWG channel ratio, with third-order polynomial fit. (b) Deflection derived from third-order fit versus deflection measured by LVDT. Residuals are shown in the lower plot.

Fig. 5
Fig. 5

(a) Dynamic response of FBG on freely vibrating cantilever. (b) FBG vibration data on expanded time scale, sampling rate 2   kHz .

Fig. 6
Fig. 6

Strain measurement on piezoelectric cylinder surface driven at 1.1   kHz .

Fig. 7
Fig. 7

Same as Fig. 6 for a drive frequency of 2.4   kHz .

Fig. 8
Fig. 8

Cross section of MCF.

Fig. 9
Fig. 9

Reflection spectra of gratings in MCF.

Fig. 10
Fig. 10

Differential curvature measurement using two cores of MCF.

Fig. 11
Fig. 11

AWG interrogation of multicore FBGs embedded in a simple cantilever. FBG is located close to the cantilever support and for simplicity, the interrogation scheme is shown for only one of the four cores.

Fig. 12
Fig. 12

(a) x deflection of cantilever measured using the sensor plotted against the directly measured deflection in x. (b) y deflection of cantilever measured using the sensor plotted against the directly measured deflection in y.

Fig. 13
Fig. 13

Plane of cantilever vibration from high-speed camera image data.

Fig. 14
Fig. 14

x and y dynamic ringdown of MCF FBGs inside cantilever tube.

Fig. 15
Fig. 15

(a) Sequence of images from high-speed camera at 4 ms intervals. Circles show corresponding sensor measurement. (b) Upper plot, x deflection measured by MCF FBGs (solid curve) and camera (x). Lower plot, y deflection measured by sensor (solid curve) and camera (○).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ i ( λ B ) = ln I i + 1 I i ,
R = d ε 1 ε 2 ,
[ ε 1 ε 2 ] = [ c 1 c 2 c 3 c 4 c 5 c 6 ] [ x y 1 ] ,

Metrics