Abstract

We present a design for a flow-through integrating cavity absorption meter. This instrument, in principle, is capable of measuring the spectral optical absorption coefficient of natural waters in situ independently of scattering effects. Monte Carlo simulations are used to determine the design parameters and evaluate instrument performance. We investigate both detector response and the distribution of radiant energy inside the instrument and present empirical equations describing these quantities as a function of the absorption coefficient. The effects of changing the instrument geometry are illustrated. Finally, we discuss the effects of scattering on the instrument performance and verify that they are negligible for natural waters.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
    [CrossRef]
  2. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  3. P. Elterman, "Integrating cavity spectroscopy," Appl. Opt. 9, 2141-2142 (1970).
    [CrossRef]
  4. E. S. Fry and G. W. Kattawar, "Measurement of the absorption coefficient of ocean water using isotropic illumination," in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE 925, 142-148 (1988).
  5. E. S. Fry, G. W. Kattawar, and R. M. Pope, "Integrating cavity absorption meter," Appl. Opt. 31, 2055-2065 (1992).
    [CrossRef] [PubMed]
  6. J. T. O. Kirk, "Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling," Appl. Opt. 36, 6123-6128 (1997).
    [CrossRef] [PubMed]
  7. R. A. Leathers, T. V. Downes, and C. O. Davis, "Analysis of a point-source integrating-cavity absorption meter," Appl. Opt. 39, 6118-6127 (2000).
    [CrossRef]
  8. R. Röttgers, W. Schönfeld, P. Kipp, and R. Doerffer, "Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies," Appl. Opt. 44, 5549-5560 (2005).
    [CrossRef] [PubMed]
  9. N. J. McCormick, "Design of a flow-through integrating cavity for measuring the optical absorption coefficient," in Oceans 1999 MTS/IEEE. Riding the Crest into the 21st Century (IEEE, 1999), Vol. 1, pp. 359-362.
  10. D. M. Hobbs and N. J. McCormick, "Design of an integrating cavity absorption meter," Appl. Opt. 38, 456-461 (1999).
    [CrossRef]
  11. High diffuse reflectance material, Spectralon SRM-99 (Labsphere, Inc., North Sutton, N.H.).
  12. L. C. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
    [CrossRef]
  13. J. T. O. Kirk, "Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity," Appl. Opt. 34, 4397-4408 (1995).
    [CrossRef] [PubMed]
  14. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

2005 (1)

2000 (1)

1999 (1)

1997 (2)

1995 (2)

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

J. T. O. Kirk, "Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity," Appl. Opt. 34, 4397-4408 (1995).
[CrossRef] [PubMed]

1992 (1)

1988 (1)

E. S. Fry and G. W. Kattawar, "Measurement of the absorption coefficient of ocean water using isotropic illumination," in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE 925, 142-148 (1988).

1970 (1)

P. Elterman, "Integrating cavity spectroscopy," Appl. Opt. 9, 2141-2142 (1970).
[CrossRef]

1941 (1)

L. C. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Cleveland, J. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Davis, C. O.

Doerffer, R.

Doss, W.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Downes, T. V.

Elterman, P.

P. Elterman, "Integrating cavity spectroscopy," Appl. Opt. 9, 2141-2142 (1970).
[CrossRef]

Fry, E. S.

Greenstein, J. L.

L. C. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Henyey, L. C.

L. C. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Hobbs, D. M.

Kattawar, G. W.

E. S. Fry, G. W. Kattawar, and R. M. Pope, "Integrating cavity absorption meter," Appl. Opt. 31, 2055-2065 (1992).
[CrossRef] [PubMed]

E. S. Fry and G. W. Kattawar, "Measurement of the absorption coefficient of ocean water using isotropic illumination," in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE 925, 142-148 (1988).

Kennedy, C. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Kipp, P.

Kirk, J. T. O.

Leathers, R. A.

Maffione, R. A.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

McCormick, N. J.

D. M. Hobbs and N. J. McCormick, "Design of an integrating cavity absorption meter," Appl. Opt. 38, 456-461 (1999).
[CrossRef]

N. J. McCormick, "Design of a flow-through integrating cavity for measuring the optical absorption coefficient," in Oceans 1999 MTS/IEEE. Riding the Crest into the 21st Century (IEEE, 1999), Vol. 1, pp. 359-362.

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Mueller, J. L.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Pegau, W. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Pope, R. M.

Röttgers, R.

Schönfeld, W.

Stone, R.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Trees, C. C.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Weidemann, A. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Wells, W. H.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Zaneveld, J. R. V.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Appl. Opt. (8)

Astrophys. J. (1)

L. C. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

J. Geophys. Res. (1)

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zaneveld, "A comparison of methods for the measurements of the absorption coefficient in natural waters," J. Geophys. Res. [Oceans] 100, 13201-13220 (1995).
[CrossRef]

Other (4)

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

High diffuse reflectance material, Spectralon SRM-99 (Labsphere, Inc., North Sutton, N.H.).

E. S. Fry and G. W. Kattawar, "Measurement of the absorption coefficient of ocean water using isotropic illumination," in Ocean Optics IX, M. A. Blizard, ed., Proc. SPIE 925, 142-148 (1988).

N. J. McCormick, "Design of a flow-through integrating cavity for measuring the optical absorption coefficient," in Oceans 1999 MTS/IEEE. Riding the Crest into the 21st Century (IEEE, 1999), Vol. 1, pp. 359-362.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Conceptual diagram of the absorption meter.

Fig. 2
Fig. 2

Relative detector signal χ as a function of the absorption coefficient for the standard geometry.

Fig. 3
Fig. 3

Distribution of power as a function of absorption for the standard geometry. Curve A represents the fraction absorbed by the medium f m , curve B represents the fraction absorbed or otherwise lost by the cavity f c , and curve C represents the fraction escaping out of the ends of the cylinder f e . For all three curves, the data points are the results from the Monte Carlo simulation, while the curves are the empirical fits through these points.

Fig. 4
Fig. 4

Detector signal as a function of cylinder length. The radius and cavity albedo are the same as the standard geometry.

Fig. 5
Fig. 5

Distribution of power as a function of cylinder length. The absorption coefficient is a = 0.1 m - 1 . The radius and cavity albedo are the same as the standard geometry.

Fig. 6
Fig. 6

Detector signal as a function of cylinder radius. The length and cavity albedo are the same as the standard geometry.

Fig. 7
Fig. 7

Distribution of power as a function of cylinder radius. The absorption coefficient is a = 0.1 m - 1 . The length and cavity albedo are the same as the standard geometry.

Fig. 8
Fig. 8

Detector signal as a function of cavity albedo. The length and radius are the same as the standard geometry.

Fig. 9
Fig. 9

Distribution of power as a function of cavity albedo. The absorption coefficient is a = 0.1 m - 1 . The length and radius are the same as the standard geometry.

Fig. 10
Fig. 10

Detector signal as a function of the scattering coefficient for the standard geometry. Results are shown for two values of the Henyey–Greenstein asymmetry parameter g. The absorption coefficient is a = 0 m - 1 .

Fig. 11
Fig. 11

Fraction of incident power that escapes the instrument as a function of the scattering coefficient.

Tables (2)

Tables Icon

Table 1 Fitting Parameters for the Relative Detector Signal

Tables Icon

Table 2 Fitting Parameters for Fractional Power Distribution

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β ˜ ( μ ; g ) = 1 4 π 1 g 2 ( 1 2 g μ + g 2 ) 3 / 2 ,
χ ( a ) = p a + q ,
f ( a ) = r + p a + q .

Metrics