Abstract

A three-dimensional (3D) digital holographic display system with image processing is presented. By use of phase-shifting digital holography, we obtain the complex amplitude of a 3D object at a recording plane. Image processing techniques are introduced to improve the quality of the reconstructed 3D object or manipulate 3D objects for elimination and addition of information by modifying the complex amplitude. The results show that the information processing is effective in such manipulations of 3D objects. We also show a fast recording system of 3D objects based on phase-shifting digital holography for display with image processing. The acquisition of 3D object information at 500 Hz is demonstrated experimentally.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  3. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, "Holographic recording of fast events on a CCD camera," Opt. Lett. 27, 22-24 (2002).
    [CrossRef]
  4. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  5. E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000).
    [CrossRef]
  6. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, 6187-6192 (2002).
    [CrossRef] [PubMed]
  7. T. J. Naughton, J. B. McDonald, and B. Javidi, "Efficient compression of Fresnel fields for Internet transmission of three-dimensional images," Appl. Opt. 42, 4758-4764 (2003).
    [CrossRef] [PubMed]
  8. O. Matoba and B. Javidi, "Optical retrieval of encrypted digital holograms for secure real-time display," Opt. Lett. 27, 321-323 (2002).
    [CrossRef]
  9. Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004).
    [CrossRef]
  10. D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
    [CrossRef]

2004

Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004).
[CrossRef]

2003

2002

2000

1999

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

1997

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

1994

Awatsuji, Y.

Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004).
[CrossRef]

Bernardo, L. B.

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Bertaux, N.

Bevilacqua, F.

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

Centurion, M.

Cuche, E.

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

Depeursinge, C.

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Frauel, Y.

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Hong, J.

Javidi, B.

Juptner, W.

Kubota, T.

Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004).
[CrossRef]

Liu, Z.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Matoba, O.

McDonald, J. B.

Naughton, T. J.

Panotopoulos, G.

Psaltis, D.

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004).
[CrossRef]

Schnars, U.

Tajahuerce, E.

Yamaguchi, I.

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

Zhang, T.

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004).
[CrossRef]

Appl. Opt.

Opt. Commun.

D. Mas, J. Garcia, C. Ferreira, L. B. Bernardo, and F. Marinho, "Fast algorithms for free-space calculation," Opt. Commun. 164, 233-245 (1999).
[CrossRef]

Opt. Lett.

E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999).
[CrossRef]

I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the 3D display system based on digital holography with image processing. CG, computer graphics.

Fig. 2
Fig. 2

Schematic of the recording system for the real-time phase-shifting digital holography. BS, beam splitter; BE, beam expander; M, mirror.

Fig. 3
Fig. 3

Recording and reconstruction of a two-dimensional image: (a) input, (b) interference pattern at the image sensor, (c) reconstructed image obtained by the maximum phase retardation of 0.54 π , and (d) reconstructed image obtained by the maximum phase retardation of 1.5 π .

Fig. 4
Fig. 4

Recording and reconstruction of a 3D object obtained at ratesof (a) 60, (b) 1000, and (c) 2000 fps .

Fig. 5
Fig. 5

Possible method for the improvement of the quality of the reconstructed 3D object by spatially averaging the reconstructed images.

Fig. 6
Fig. 6

Results of the spatial averaging of the 3D object: (a) original reconstructed image at 232 mm, spatially averaged 3D objects by (b) 11 × 11 and (c) 15 × 15 windows, and (d) their intensity profiles.

Fig. 7
Fig. 7

Operations of the elimination of the 3D object.

Fig. 8
Fig. 8

Results of the elimination of the 3D object: (a) original reconstructed image at 305 mm and (b) elimination of a die.

Fig. 9
Fig. 9

Results of the addition of 2D characters at different positions: (a) 275 , (b) 315 , and (c) 355 mm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ) = o z ( ξ , η ) g z ( x ξ , y η ) dξdη
= o z ( x , y ) g z ( x , y )
= f a ( x , y ) exp [ i f p ( x , y ) ] ,
g z ( x , y ) = exp [ i π λ z ( x 2 + y 2 ) ] ,
I Δ ( x , y ) = | f ( x , y ) + r Δ ( x , y ) | 2 = | f a ( x , y ) | 2 + | r a ( x , y ) | 2 + 2 f a ( x , y ) r a ( x , y ) cos [ f p ( x , y ) r p ( x , y ) Δ ] ,
r Δ ( x , y ) = r a ( x , y ) exp { i [ r p ( x , y ) + Δ ] } ,
f r ( x , y ) = 1 4 r r ( x , y ) { [ I 0 ( x , y ) I π ( x , y ) ] 2 + [ I π / 2 ( x , y ) I 3 π / 2 ( x , y ) ] 2 } ,
f i ( x , y ) = tan 1 [ I π / 2 ( x , y ) I 3 π / 2 ( x , y ) I 0 ( x , y ) I π ( x , y ) ] .

Metrics