Abstract

A new technique has been developed for an instant, precise, and accurate wavelength calibration over a wide pixel array for simultaneous, multielement spectral analysis based on an inverse numerical solution to the grating dispersion function. This technique is applicable to multielement analytical applications such as laser-induced breakdown spectroscopy (LIBS), particularly when using high-density gratings in the upper visible and in the near-infrared, where nonmetallic elements are detected. This application overcomes the need to use reference spectra for each window of observation and is tested on a commercially available LIBS instrument.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
    [CrossRef]
  2. L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta , Part B 57, 1109-1113 (2002).
    [CrossRef]
  3. D. W. Hahn, A. W. Miziolek, and V. Palleschi, "Laser-induced breakdown spectroscopy: an introduction to the feature issue," Appl. Opt. 42, 5937-5937 (2003).
    [CrossRef] [PubMed]
  4. S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
    [CrossRef]
  5. W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
    [CrossRef]
  6. S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
    [CrossRef]
  7. I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
    [CrossRef]
  8. M. Czerny and A. F. Turner, "Über den Astigmatismus bei Spiegelspektrometern," Z. Phys. 61, 792-797 (1930).
    [CrossRef]
  9. W. G. Fastie, "Small plane grating monochromator," J. Opt. Soc. Am. 42, 641-647 (1951).
    [CrossRef]
  10. R. A. Myers, A. M. Karger, and D. W. Hahn, "Geiger photodiode array for compact lightweight laser-induced breakdown spectroscopy instrumentation," Appl. Opt. 42, 6072-6077 (2003).
    [CrossRef] [PubMed]
  11. X. Hou and B. T. Jones, "Field instrumentation in atomic spectroscopy," Microchem. J. 66, 115-145 (2000).
    [CrossRef]
  12. H. E. Bauer, F. Leis, and K. Niemax, "Laser induced breakdown spectroscopy with an echelle spectrometer and intensified charge coupled device detection," Spectrochim. Acta , Part B 53, 1815-1825 (1998).
    [CrossRef]
  13. V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
    [CrossRef]
  14. S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
    [CrossRef]
  15. L. R. P. Butler and K. Laqua, "Nomenclature, symbols, units and their usage in spectrochemical analysis. IX. Instrumentation for the spectral dispersion and isolation of optical radiation," Spectrochim. Acta , Part B 51, 645-664 (1996).
    [CrossRef]
  16. D. J. Lockwood, "Plane grating dispersion formulas," Appl. Opt. 12, 896-897 (1973).
    [CrossRef]
  17. G. T. Best, "Dispersion of plane grating spectrometers," Appl. Opt. 12, 1751-1752 (1973).
    [CrossRef]
  18. C. C. Jones and J. H. Shaw, "Comment on plane-grating dispersion formulas," Appl. Opt. 12, 1751 (1973).
    [CrossRef] [PubMed]
  19. G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
    [CrossRef]
  20. G. Asimellis, A. Giannoudakos, and M. Kompitsas, "New near-infrared LIBS detection technique for sulfur," Anal. Bioanal. Chem. 385, 333-337 (2006).
    [CrossRef] [PubMed]
  21. R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, "Laser-induced breakdown spectroscopy for polymer identification," Appl. Spectrosc. 52, 456-461 (1998).
    [CrossRef]
  22. G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
    [CrossRef]

2006 (1)

G. Asimellis, A. Giannoudakos, and M. Kompitsas, "New near-infrared LIBS detection technique for sulfur," Anal. Bioanal. Chem. 385, 333-337 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
[CrossRef]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
[CrossRef]

2004 (2)

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

2003 (2)

2002 (1)

L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta , Part B 57, 1109-1113 (2002).
[CrossRef]

2001 (3)

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
[CrossRef]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

2000 (2)

X. Hou and B. T. Jones, "Field instrumentation in atomic spectroscopy," Microchem. J. 66, 115-145 (2000).
[CrossRef]

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

1998 (3)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
[CrossRef]

R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, "Laser-induced breakdown spectroscopy for polymer identification," Appl. Spectrosc. 52, 456-461 (1998).
[CrossRef]

H. E. Bauer, F. Leis, and K. Niemax, "Laser induced breakdown spectroscopy with an echelle spectrometer and intensified charge coupled device detection," Spectrochim. Acta , Part B 53, 1815-1825 (1998).
[CrossRef]

1996 (1)

L. R. P. Butler and K. Laqua, "Nomenclature, symbols, units and their usage in spectrochemical analysis. IX. Instrumentation for the spectral dispersion and isolation of optical radiation," Spectrochim. Acta , Part B 51, 645-664 (1996).
[CrossRef]

1973 (3)

1951 (1)

1930 (1)

M. Czerny and A. F. Turner, "Über den Astigmatismus bei Spiegelspektrometern," Z. Phys. 61, 792-797 (1930).
[CrossRef]

Al-Wazzan, E.

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

Asimellis, G.

G. Asimellis, A. Giannoudakos, and M. Kompitsas, "New near-infrared LIBS detection technique for sulfur," Anal. Bioanal. Chem. 385, 333-337 (2006).
[CrossRef] [PubMed]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
[CrossRef]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

Bassiotis, I.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

Bauer, H. E.

H. E. Bauer, F. Leis, and K. Niemax, "Laser induced breakdown spectroscopy with an echelle spectrometer and intensified charge coupled device detection," Spectrochim. Acta , Part B 53, 1815-1825 (1998).
[CrossRef]

Best, G. T.

Bromley, B.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

Butler, L. R. P.

L. R. P. Butler and K. Laqua, "Nomenclature, symbols, units and their usage in spectrochemical analysis. IX. Instrumentation for the spectral dispersion and isolation of optical radiation," Spectrochim. Acta , Part B 51, 645-664 (1996).
[CrossRef]

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
[CrossRef]

Chenery, S.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Couris, S.

Czerny, M.

M. Czerny and A. F. Turner, "Über den Astigmatismus bei Spiegelspektrometern," Z. Phys. 61, 792-797 (1930).
[CrossRef]

Dawson, J. B.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
[CrossRef]

Devlin, S.

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

Diamantopoulou, A.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

Evans, E. H.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Fastie, W. G.

Fisher, A.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Fotakis, C.

Giannoudakos, A.

G. Asimellis, A. Giannoudakos, and M. Kompitsas, "New near-infrared LIBS detection technique for sulfur," Anal. Bioanal. Chem. 385, 333-337 (2006).
[CrossRef] [PubMed]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

Hahn, D. W.

Hamilton, S.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
[CrossRef]

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

Hanvey, A.

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

Hatziapostolou, A.

Hazlett, R.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
[CrossRef]

Hill, S. J.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Hou, X.

X. Hou and B. T. Jones, "Field instrumentation in atomic spectroscopy," Microchem. J. 66, 115-145 (2000).
[CrossRef]

Jones, B. T.

X. Hou and B. T. Jones, "Field instrumentation in atomic spectroscopy," Microchem. J. 66, 115-145 (2000).
[CrossRef]

Jones, C. C.

Karger, A. M.

Kompitsas, M.

G. Asimellis, A. Giannoudakos, and M. Kompitsas, "New near-infrared LIBS detection technique for sulfur," Anal. Bioanal. Chem. 385, 333-337 (2006).
[CrossRef] [PubMed]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

Krause, H.

Laqua, K.

L. R. P. Butler and K. Laqua, "Nomenclature, symbols, units and their usage in spectrochemical analysis. IX. Instrumentation for the spectral dispersion and isolation of optical radiation," Spectrochim. Acta , Part B 51, 645-664 (1996).
[CrossRef]

Larrauri, E.

Lee, W. B.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Lee, Y. I.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Leis, F.

H. E. Bauer, F. Leis, and K. Niemax, "Laser induced breakdown spectroscopy with an echelle spectrometer and intensified charge coupled device detection," Spectrochim. Acta , Part B 53, 1815-1825 (1998).
[CrossRef]

Lockwood, D. J.

Martin, J.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

Mavromanolakis, A.

Miguel, R.

Miziolek, A. W.

Monch, I.

Myers, R. A.

Niemax, K.

H. E. Bauer, F. Leis, and K. Niemax, "Laser induced breakdown spectroscopy with an echelle spectrometer and intensified charge coupled device detection," Spectrochim. Acta , Part B 53, 1815-1825 (1998).
[CrossRef]

Noll, R.

Palleschi, V.

Price, W. J.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta , Part B 57, 1109-1113 (2002).
[CrossRef]

Rosenwasser, S.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

Roubani-Kalantzopoulou, F.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
[CrossRef]

Sabsabi, M.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
[CrossRef]

Sattmann, R.

Schaurich, D.

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Shaw, J. H.

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
[CrossRef]

Smith, C. M. M.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Sneddon, J.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

St-Onge, L.

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
[CrossRef]

Suttonf, K. L.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Turner, A. F.

M. Czerny and A. F. Turner, "Über den Astigmatismus bei Spiegelspektrometern," Z. Phys. 61, 792-797 (1930).
[CrossRef]

Tyson, J. F.

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

Varagnat, A.

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

Weritz, F.

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Wiggenhauser, H.

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Wilsch, G.

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
[CrossRef]

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
[CrossRef]

Wu, J. Y.

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Zigler, A.

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

Anal. Bioanal. Chem. (1)

G. Asimellis, A. Giannoudakos, and M. Kompitsas, "New near-infrared LIBS detection technique for sulfur," Anal. Bioanal. Chem. 385, 333-337 (2006).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spectrosc. Rev. 39, 27-97 (2004).
[CrossRef]

Constr. Build. Mater. (1)

G. Wilsch, F. Weritz, D. Schaurich, and H. Wiggenhauser, "Determination of chloride content in concrete structures with laser-induced breakdown spectroscopy," Constr. Build. Mater. 19, 724-730 (2005).
[CrossRef]

J. Anal. At. Spectrom. (2)

S. J. Hill, S. Chenery, J. B. Dawson, E. H. Evans, A. Fisher, W. J. Price, C. M. M. Smith, K. L. Suttonf, and J. F. Tyson, "Advances in atomic emission, absorption and fluorescence spectrometry, and related techniques," J. Anal. At. Spectrom. 15, 763-805 (2000).
[CrossRef]

S. Hamilton, E. Al-Wazzan, A. Hanvey, A. Varagnat, and S. Devlin, "Fully integrated wide wavelength range LIBS system with high UV efficiency and resolution," J. Anal. At. Spectrom. 19, 479-482 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Microchem. J. (1)

X. Hou and B. T. Jones, "Field instrumentation in atomic spectroscopy," Microchem. J. 66, 115-145 (2000).
[CrossRef]

Spectrochim. Acta (7)

H. E. Bauer, F. Leis, and K. Niemax, "Laser induced breakdown spectroscopy with an echelle spectrometer and intensified charge coupled device detection," Spectrochim. Acta , Part B 53, 1815-1825 (1998).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, and L. St-Onge, "An evaluation of a commercial Échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy," Spectrochim. Acta , Part B 56, 1011-1025 (2001).
[CrossRef]

L. R. P. Butler and K. Laqua, "Nomenclature, symbols, units and their usage in spectrochemical analysis. IX. Instrumentation for the spectral dispersion and isolation of optical radiation," Spectrochim. Acta , Part B 51, 645-664 (1996).
[CrossRef]

S. Rosenwasser, G. Asimellis, B. Bromley, R. Hazlett, J. Martin, and A. Zigler, "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochim. Acta , Part B 56, 707-714 (2001).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, and M. Kompitsas, "Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 56, 671-683 (2001).
[CrossRef]

L. J. Radziemski, "From LASER to LIBS, the path of technology development," Spectrochim. Acta , Part B 57, 1109-1113 (2002).
[CrossRef]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, "Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy," Spectrochim. Acta , Part B 60, 1132-1139 (2005).
[CrossRef]

Trends Anal. Chem. (1)

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, "Recent trends and the future of laser-induced plasma spectroscopy," Trends Anal. Chem. 17, 733-736 (1998).
[CrossRef]

Z. Phys. (1)

M. Czerny and A. F. Turner, "Über den Astigmatismus bei Spiegelspektrometern," Z. Phys. 61, 792-797 (1930).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Two orders of diffraction off a ruled grating.

Fig. 2
Fig. 2

(Color online) Grating is scanned so that the selected center wavelength intersects the center of the CCD array.

Fig. 3
Fig. 3

(Color online) Calculated inverse dispersion function (vertical axis) for two grating groove frequencies versus wavelength (horizontal axis). Solid curve (right vertical axis) corresponds to a 1800 line∕mm grating, dashed curve (left vertical axis) corresponds to a 2400 line / mm grating.

Fig. 4
Fig. 4

(Color online) Extent of the spectral window for a 1024 pixel wide, 26 μ m pixel size active sensor area calculated for two grating groove frequencies. Solid curve corresponds to a 1800 line / mm grating, dashed curve corresponds to a 2400 line / mm grating.

Fig. 5
Fig. 5

(Color online) One-point calculation of the dispersion function is more inaccurate at higher wavelengths.

Fig. 6
Fig. 6

(Color online) Linear approximation of the dispersion function.

Fig. 7
Fig. 7

(Color online) (a) Linear approximation for the 600–650 spectral window for the dispersion function (vertical axis, expressed in pixels∕nanometer) versus wavelength (horizontal axis, expressed in nanometers) for a 1800 line / mm grating using values from slope (α) and intersection (β) parameters from Table 2. (b) Linear approximation for the 750–775 spectral window for the dispersion function (vertical axis, expressed in pixels∕nanometer) versus wavelength (horizontal axis, expressed in nanometers) for a 2400 line∕mm grating using values from slope (α) and intersection (β) parameters from Table 3.

Fig. 8
Fig. 8

(Color online) (a) Fourth-order polynomial approximation for the α parameter (slope) using a 25 nm wide spectral window for the 2400 line / mm grating. (b) Fourth-order polynomial approximation for the β parameter using a 25 nm wide spectral window for the 2400 line / mm grating.

Fig. 9
Fig. 9

(Color online) (a) Sixth-order polynomial fitting for the α parameter (slope) using a 5 pixel wide spectral window for the 2400 line / mm grating. (b) Sixth-order polynomial fitting for the β parameter (intersection) using a 5 pixel wide spectral window for the 2400 line / mm grating.

Fig. 10
Fig. 10

(Color online) Experimental comparison among fourth- and sixth-order regression fits.

Tables (6)

Tables Icon

Table 1 Typical Values from a Czerny–Turner Spectrograph

Tables Icon

Table 2 Linear Approximation Coefficients for a 50 nm Sliding Window for the 1800 line∕mm Grating

Tables Icon

Table 3 Linear Approximation Coefficients for a 50 nm Sliding Window for the 2400 line\mm Grating

Tables Icon

Table 4 Regression-Calculated [Based on Eq. (10)] versus Exact Values for Dispersion

Tables Icon

Table 5 Regression-Calculated versus Exact Values for Dispersion Based on a Sixth-Order Polynomial Fit with a 25 nm Sampling

Tables Icon

Table 6 Measured Discrepancy (Å) Between Actual and Calculated Wavelengths (Experimental Results) a

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

λ ( nm ) = r ( nm / mm ) × position   ( m m ) ,
λ ( nm ) = r ( nm / pixel ) × pixel   number .
r ( nm / mm ) = 10 6 × cos θ m ( λ ) / G F ,
r ( nm / pixel ) = 10 9 × P   cos   θ m ( λ ) / G F ,
sin   θ m ( λ ) = m λ d sin   θ i m λ d = [ sin   θ i + sin   θ m ( λ ) ] ,
sin   θ m ( λ ) = m λ d sin   θ i θ m ( λ ) = arcsin ( m λ d sin   θ i ) .
2 x = θ i ( λ ) + θ m ( λ ) = constant , θ i ( λ ) = 2 x θ m ( λ ) ,
2 φ ( λ ) = θ m ( λ ) θ i ( λ ) .
φ ( λ ) = θ m ( λ ) x .
φ ( λ ) = arcsin ( λ G / 2   cos   x ) .
θ m ( λ ) = arcsin ( λ G / 2   cos   x ) + x .
r ( nm / pixel ) = 10 9 × P   cos   β ( λ ) / G F = r ( nm / pixel ) = 10 9 × P   cos [ arcsin ( λ G / 2   cos   x ) + x ] / G F .
r 512 ( nm / pixel )
= 10 9 × P cos [ arcsin ( λ 512 G / 2 cos x ) + x ] / G F .
λ ( n ) = λ 512 + r 512 ( n 512 ) .
r = α λ + β
α = 5.8473 × 10 15 λ 4 + 9.8282 × 10 12 λ 3 6.0618 × 10 9 λ 2 + 1.5303 × 10 6 λ 1.5940 × 10 4 ,
β = 4.5717 × 10 12 λ 4 7.7062 × 10 9 λ 3 + 4.7673 × 10 6 λ 2 1.2397 × 10 3 λ + 1.5040 × 10 1 .
α = 4.6112 × 10 16 λ 4 + 8.2458 × 10 13 λ 3 5.6680 × 10 10 λ 2 + 1.2131 × 10 7 λ 2.8106 × 10 5 ,
β = 4.7905 × 10 13 λ 4 8.7040 × 10 10 λ 3 + 6.1239 × 10 7 λ 2 1.7046 × 10 4 λ + 6.3783 × 10 2 .
r = α 512 × λ + β 512 .
λ ( n ) = λ 512 + [ α 512 × λ ( n ) + β 512 ] ( n 512 ) .
λ ( n ) = [ λ 512 + β 512 × ( n 512 ) ] / [ 1 α 512 × ( n 512 ) ] .
α = 4.2924512 × 10 20 λ 6 + 1.0509223 × 10 16 λ 5 1.0377977 × 10 13 λ 4 + 5.2399553 × 10 11 λ 3 1.4223410 × 10 8 λ 2 + 1.8996497 × 10 6 λ 1.1761611 × 10 4 ,
β = 3.3804240 × 10 - 1 7 λ 6 8.2814222 × 10 14 λ 5 + 8.1815644 × 10 11 λ 4 4.1340079 × 10 8 λ 3 + 1.1242044 × 10 5 λ 2 1.5405966 × 10 3 λ + 1.1828985 × 10 1 .
α = 2.7648780 × 10 - 2 1 λ 6 + 8.3389103 × 10 - 18 λ 5 1.0229129 × 10 - 1 4 λ 4 + 6.4183123 × 10 - 1 2 λ 3 2.1778896 × 10 - 9 λ 2 + 3.3328799 × 10 7 λ 3.7097582 × 10 5 ,
β = 2.8856286 × 10 - 1 8 λ 6 8.7123436 × 10 - 15 λ 5 + 1.0695649 × 10 - 1 1 λ 4 6.7245578 × 10 - 9 λ 3 + 2.2965524 × 10 - 6 λ 2 3.906752 × 10 4 λ + 7.2923762 × 10 2 .

Metrics