Abstract

A counting signal processing technique of the fiber-optic interferometric sensor is proposed. The technique is capable of counting the numbers of the maximum and minimum of the output interferometric signal in a specific time duration, and it can be used as the basis to distinguish the sensing phase signal. It can also be used as a signal detector on applications such as intrusion detection. All sensors are subject to aging of the optical components and bending loss, and therefore the output signal of each sensor may vary with time. We propose a counting level normalization technique to compensate for these variations and to obtain the correct counting numbers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, "Recent progress in interferometric fiber sensor technology," in Fiber Optic and Laser Sensors VIII, R.P.Depaula and E.Udd, eds., Proc. SPIE 1367, 2-12 (1990).
  2. A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-520 (1991).
    [CrossRef]
  3. M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-344 (1989).
    [CrossRef]
  4. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
    [CrossRef]
  5. S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
    [CrossRef]
  6. V. S. Suadarshanam and K. Srinivasan, "Static phase change in a fiber-optic coil hydrophone," Appl. Opt. 29, 855-863 (1990).
    [CrossRef]
  7. G. B. Hocker, "Fiber-optic sensing of pressure and temperature," Appl. Opt. 18, 1445-1448 (1979).
    [CrossRef] [PubMed]
  8. C. D. Butter and G. B. Hocker, "Fiber-optic strain gauge," Appl. Opt. 17, 2867-2869 (1978).
    [CrossRef] [PubMed]
  9. J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, in Fiber-Optic Acoustic Transduction, Vol. 16 of Physical Acoustics (Academic, 1982), pp. 385-457.
  10. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, "Elimination of drift in a single-mode optical fiber interferometer using a piezo-electrically stretched coiled fiber," Appl. Opt. 19, 2926-2920 (1980).
    [CrossRef] [PubMed]
  11. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber-optic sensors using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
    [CrossRef]
  12. C. McGarrity and D. A. Jackson, "Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors," Opt. Commun. 109, 246-248 (1994).
    [CrossRef]

1996 (1)

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

1994 (1)

C. McGarrity and D. A. Jackson, "Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors," Opt. Commun. 109, 246-248 (1994).
[CrossRef]

1991 (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-520 (1991).
[CrossRef]

1990 (1)

1989 (1)

M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-344 (1989).
[CrossRef]

1982 (2)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber-optic sensors using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
[CrossRef]

1980 (1)

1979 (1)

1978 (1)

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, in Fiber-Optic Acoustic Transduction, Vol. 16 of Physical Acoustics (Academic, 1982), pp. 385-457.

Butter, C. D.

Chao, H.-L.

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

Chen, M.-H.

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, in Fiber-Optic Acoustic Transduction, Vol. 16 of Physical Acoustics (Academic, 1982), pp. 385-457.

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber-optic sensors using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, "Elimination of drift in a single-mode optical fiber interferometer using a piezo-electrically stretched coiled fiber," Appl. Opt. 19, 2926-2920 (1980).
[CrossRef] [PubMed]

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-520 (1991).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber-optic sensors using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
[CrossRef]

J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, in Fiber-Optic Acoustic Transduction, Vol. 16 of Physical Acoustics (Academic, 1982), pp. 385-457.

Hocker, G. B.

Huang, S.-C.

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

Hung, S.-C.

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

Jackson, D. A.

C. McGarrity and D. A. Jackson, "Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors," Opt. Commun. 109, 246-248 (1994).
[CrossRef]

D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, "Elimination of drift in a single-mode optical fiber interferometer using a piezo-electrically stretched coiled fiber," Appl. Opt. 19, 2926-2920 (1980).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-520 (1991).
[CrossRef]

A. D. Kersey, "Recent progress in interferometric fiber sensor technology," in Fiber Optic and Laser Sensors VIII, R.P.Depaula and E.Udd, eds., Proc. SPIE 1367, 2-12 (1990).

Lagakos, N.

J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, in Fiber-Optic Acoustic Transduction, Vol. 16 of Physical Acoustics (Academic, 1982), pp. 385-457.

Lin, W.-W.

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-520 (1991).
[CrossRef]

Martinelli, M.

M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-344 (1989).
[CrossRef]

McGarrity, C.

C. McGarrity and D. A. Jackson, "Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors," Opt. Commun. 109, 246-248 (1994).
[CrossRef]

Priest, R.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

Srinivasan, K.

Suadarshanam, V. S.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber-optic sensors using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
[CrossRef]

D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, "Elimination of drift in a single-mode optical fiber interferometer using a piezo-electrically stretched coiled fiber," Appl. Opt. 19, 2926-2920 (1980).
[CrossRef] [PubMed]

Appl. Opt. (4)

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-520 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE J. Quantum Electron. QE-18, 626-665 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, "Homodyne demodulation scheme for fiber-optic sensors using phase generated carrier," IEEE J. Quantum Electron. QE-18, 1647-1653 (1982).
[CrossRef]

J. Lightwave Technol. (1)

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, and H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors," J. Lightwave Technol. 14, 1488-1500 (1996).
[CrossRef]

Opt. Commun. (2)

M. Martinelli, "A universal compensator for polarization change induced by birefringence on a retracing beam," Opt. Commun. 72, 341-344 (1989).
[CrossRef]

C. McGarrity and D. A. Jackson, "Improvement on phase generated carrier technique for passive demodulation of miniature interferometric sensors," Opt. Commun. 109, 246-248 (1994).
[CrossRef]

Other (2)

A. D. Kersey, "Recent progress in interferometric fiber sensor technology," in Fiber Optic and Laser Sensors VIII, R.P.Depaula and E.Udd, eds., Proc. SPIE 1367, 2-12 (1990).

J. A. Bucaro, N. Lagakos, J. H. Cole, and T. G. Giallorenzi, in Fiber-Optic Acoustic Transduction, Vol. 16 of Physical Acoustics (Academic, 1982), pp. 385-457.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Polarization-insensitive fiber-optic Michelson interferometric sensor (PIFOMIS).

Fig. 2
Fig. 2

Interference signal waveform of the PIFOMIS in normal environment, with fiber arms buried under 10   cm of soil.

Fig. 3
Fig. 3

Waveform of the PIFOMIS for a 60   kg person walking slowly across the sensing zone with installed conditions identical to those in Fig. 2.

Fig. 4
Fig. 4

Waveform of the PIFOMIS for a 60   kg person walking hastily across the sensing zone.

Fig. 5
Fig. 5

Waveform of the PIFOMIS for a 60   kg person crawling across the sensing zone.

Fig. 6
Fig. 6

Waveform of the PIFOMIS for a 33   kg person walking hastily across the sensing zone.

Fig. 7
Fig. 7

Waveform of the PIFOMIS for heavy rain; the average counting value approximates only 12 in 100   ms for a period of 2 s.

Fig. 8
Fig. 8

Interference signal waveform of the PIFOMIS in normal environment, with fiber arms fixed along the fence.

Fig. 9
Fig. 9

Waveform of the PIFOMIS for a 60   kg person climbing a fence.

Fig. 10
Fig. 10

Waveform for violent winds, the average counting value approximates 250 in 100   ms for a period of 2 s.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = β ( Δ L ) + L ( d β d n ) Δ n + L ( d β d D ) Δ D .
Δ ϕ = { ε z n 2 2 [ ( P 11 + P 12 ) ε r + P 12 ε z ] } n k L = { 1 n 2 2 [ ( 1 μ ) P 12 μ P 11 ] } ε z n k L = ξ n k Δ L ,
I = I 0 + I 1 cos   ϕ d ( t ) ,
V = R ε I = R ε [ I 0 + I 1  cos   ϕ d ( t ) ] = V 0 + V 1  cos   ϕ d ( t ) ,
V c ,max = ( V 0 V 1 ) + 2 V 1 × a % = V 0 + ( 0.02 a 1 ) V 1 ,
V c ,min = ( V 0 V 1 ) + 2 V 1 × ( 100 a ) % = V 0 + ( 1 0.02 a ) V 1 .
Δ ϕ = b Δ L Δ i   sin   ω m t = ϕ m  sin   ω m t ,
V c ,max = V 0 + ( 0.02 a 1 ) V 1 = 0.01 a V max,new + ( 1 0.01 a ) V min,new ,
V c ,min = V 0 + ( 1 0.02 a ) V 1 = ( 1 0.01 a ) V max,new + 0.01 V min,new .
V vis = ( V max V min ) / ( V max + V min ) = V 1 / V 0 .

Metrics