Abstract

A processing technique using femtosecond laser pulses to microstructure the surface of a silicon avalanche photodiode (APD) has been used to enhance its near-infrared (near-IR) response. Experiments were performed on a series of APDs and APD arrays using various structuring parameters and poststructuring annealing sequences. Following thermal annealing, we were able to fabricate APD arrays with quantum efficiencies as high as 58% at 1064 nm without degradation of their noise or gain performance. Experimental results provided evidence to suggest that the improvement in charge collection is a result of increased absorption in the near-IR.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, 1981).
  2. L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
    [Crossref]
  3. M. Okamura and S. Suzuki, "Infrared photodetection using a A-Si-H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
    [Crossref]
  4. M.-K. Lee, C.-H. Chu, Y.-H. Wang, and S. M. Sze, "1.55-mm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector," Opt. Lett. 26, 160-162 (2001).
    [Crossref]
  5. M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
    [Crossref]
  6. R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).
  7. M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "High-speed resonant-cavity enhanced silicon photodetectors on reflecting silicon-on-insulator substrates," IEEE Photon . Technol. Lett. 14, 519-521 (2002).
    [Crossref]
  8. A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Y. Leong, and J. G. Rarity, "Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers," Opt. Lett. 27, 219-221 (2002).
    [Crossref]
  9. S.-B. Ko and H. T. Henderson, "The use of multiple internal reflection on extrinsic silicon infrared detection," IEEE Trans. Electron. Devices ED-27, 62-65 (1980).
  10. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
    [Crossref]
  11. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
    [Crossref]
  12. R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
    [Crossref]
  13. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
    [Crossref]
  14. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
    [Crossref]
  15. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, "Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation," Appl. Phys. Lett. 74, 2322-2324 (1999).
    [Crossref]
  16. J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
    [Crossref]
  17. J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
    [Crossref]
  18. J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by microraman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221, 215-230 (2004).
    [Crossref]
  19. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-1775 (2005).
    [Crossref] [PubMed]
  20. R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
    [Crossref]
  21. R. Redus and R. Farrell, "Gain and noise in very high gain avalanche photodiodes: theory and experiment," in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover and F. P. Doty, eds., Proc. SPIE 2859, 288-297 (1996).
    [Crossref]
  22. R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
    [Crossref]
  23. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
    [Crossref]
  24. E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
    [Crossref]

2006 (1)

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

2005 (3)

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-1775 (2005).
[Crossref] [PubMed]

2004 (3)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by microraman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221, 215-230 (2004).
[Crossref]

2003 (1)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

2002 (2)

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "High-speed resonant-cavity enhanced silicon photodetectors on reflecting silicon-on-insulator substrates," IEEE Photon . Technol. Lett. 14, 519-521 (2002).
[Crossref]

A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Y. Leong, and J. G. Rarity, "Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers," Opt. Lett. 27, 219-221 (2002).
[Crossref]

2001 (2)

M.-K. Lee, C.-H. Chu, Y.-H. Wang, and S. M. Sze, "1.55-mm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector," Opt. Lett. 26, 160-162 (2001).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

2000 (1)

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

1999 (1)

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, "Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation," Appl. Phys. Lett. 74, 2322-2324 (1999).
[Crossref]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

1996 (2)

R. Redus and R. Farrell, "Gain and noise in very high gain avalanche photodiodes: theory and experiment," in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover and F. P. Doty, eds., Proc. SPIE 2859, 288-297 (1996).
[Crossref]

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
[Crossref]

1995 (1)

R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).

1994 (2)

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

M. Okamura and S. Suzuki, "Infrared photodetection using a A-Si-H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[Crossref]

1992 (1)

M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
[Crossref]

1984 (1)

E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
[Crossref]

1980 (1)

S.-B. Ko and H. T. Henderson, "The use of multiple internal reflection on extrinsic silicon infrared detection," IEEE Trans. Electron. Devices ED-27, 62-65 (1980).

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

Bonse, J.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by microraman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221, 215-230 (2004).
[Crossref]

Brzezinka, K. W.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by microraman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221, 215-230 (2004).
[Crossref]

Buller, G. S.

Canham, L. T.

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
[Crossref]

Carey, J. E.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Carline, R. T.

Chen, D. Y.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

Chen, X.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

Chu, C.-H.

Cirignano, L.

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

Cova, S.

M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
[Crossref]

Cox, T. I.

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
[Crossref]

Crouch, C. H.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

Dosunmu, O.

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "High-speed resonant-cavity enhanced silicon photodetectors on reflecting silicon-on-insulator substrates," IEEE Photon . Technol. Lett. 14, 519-521 (2002).
[Crossref]

Emsley, M. K.

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "High-speed resonant-cavity enhanced silicon photodetectors on reflecting silicon-on-insulator substrates," IEEE Photon . Technol. Lett. 14, 519-521 (2002).
[Crossref]

Entine, G.

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

Farrell, R.

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

R. Redus and R. Farrell, "Gain and noise in very high gain avalanche photodiodes: theory and experiment," in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover and F. P. Doty, eds., Proc. SPIE 2859, 288-297 (1996).
[Crossref]

R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

Fowlkes, J. D.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, "Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation," Appl. Phys. Lett. 74, 2322-2324 (1999).
[Crossref]

Friend, C. M.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

Génin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

Ghioni, M.

M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
[Crossref]

Gordon, J. S.

R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).

Grazioso, R.

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

Grimmeiss, H. G.

E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
[Crossref]

Grossman, G.

E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
[Crossref]

Henderson, H. T.

S.-B. Ko and H. T. Henderson, "The use of multiple internal reflection on extrinsic silicon infrared detection," IEEE Trans. Electron. Devices ED-27, 62-65 (1980).

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

Herbert, D. C.

Hiskett, P. A.

Janzén, E.

E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
[Crossref]

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Ko, S.-B.

S.-B. Ko and H. T. Henderson, "The use of multiple internal reflection on extrinsic silicon infrared detection," IEEE Trans. Electron. Devices ED-27, 62-65 (1980).

Lacaita, A.

M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
[Crossref]

Lee, M.-K.

Leong, W. Y.

Levinson, J. A.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Li, W.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

Li, Z.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

Loni, A.

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
[Crossref]

Loudon, A. Y.

Lowndes, D. H.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, "Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation," Appl. Phys. Lett. 74, 2322-2324 (1999).
[Crossref]

Mazur, E.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-1775 (2005).
[Crossref] [PubMed]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

Meixner, A. J.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by microraman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221, 215-230 (2004).
[Crossref]

Myers, R.

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

Okamura, M.

M. Okamura and S. Suzuki, "Infrared photodetection using a A-Si-H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[Crossref]

Pedraza, A. J.

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, "Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation," Appl. Phys. Lett. 74, 2322-2324 (1999).
[Crossref]

Rarity, J. G.

Redus, R.

R. Redus and R. Farrell, "Gain and noise in very high gain avalanche photodiodes: theory and experiment," in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover and F. P. Doty, eds., Proc. SPIE 2859, 288-297 (1996).
[Crossref]

Redus, R. H.

R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).

Ripamonti, G.

M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
[Crossref]

Shah, K.

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

Sheehy, M. A.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

Shen, M.

J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-1775 (2005).
[Crossref] [PubMed]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

Shen, Y. F.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

Simons, A. J.

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
[Crossref]

Squillante, M. R.

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

Stedman, R.

E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
[Crossref]

Suzuki, S.

M. Okamura and S. Suzuki, "Infrared photodetection using a A-Si-H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[Crossref]

Sze, S. M.

Ünlü, M. S.

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "High-speed resonant-cavity enhanced silicon photodetectors on reflecting silicon-on-insulator substrates," IEEE Photon . Technol. Lett. 14, 519-521 (2002).
[Crossref]

Vanderpuye, K.

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

Wang, Y.-H.

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

Yin, G.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

Younkin, R.

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Zhao, L.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Zhao, M.

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

Zhu, J. T.

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

Appl. Phys. A (1)

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Génin, "Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation," Appl. Phys. A 79, 1635-1641 (2004).
[Crossref]

Appl. Phys. Lett. (4)

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Génin, "Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon," Appl. Phys. Lett. 84, 1850-1852 (2004).
[Crossref]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, "Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation," Appl. Phys. Lett. 74, 2322-2324 (1999).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Appl. Phys. Lett. 73, 1673-1675 (1998).
[Crossref]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, "Near-unity below-band-gap absorption by microstructured silicon," Appl. Phys. Lett. 78, 1850-1852 (2001).
[Crossref]

Appl. Surf. Sci. (4)

J. T. Zhu, Y. F. Shen, W. Li, X. Chen, G. Yin, D. Y. Chen, and Z. Li, "Effects of polarization on femtosecond laser pulses structuring silicon surfaces," Appl. Surf. Sci. 252, 2752-2756 (2006).
[Crossref]

J. T. Zhu, G. Yin, M. Zhao, D. Y. Chen, and L. Zhao, "Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations," Appl. Surf. Sci. 245, 102-108 (2005).
[Crossref]

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by microraman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221, 215-230 (2004).
[Crossref]

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Appl. Surf. Sci. 102, 436-441 (1996).
[Crossref]

Chem. Mater. (1)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17, 3583-3586 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, "All-silicon photodiode sensitive at 1.3 micron with picosecond time resolution," IEEE J. Quantum Electron. 28, 2678-2681 (1992).
[Crossref]

IEEE Photon (1)

M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "High-speed resonant-cavity enhanced silicon photodetectors on reflecting silicon-on-insulator substrates," IEEE Photon . Technol. Lett. 14, 519-521 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Okamura and S. Suzuki, "Infrared photodetection using a A-Si-H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[Crossref]

IEEE Trans. Electron. Devices (1)

S.-B. Ko and H. T. Henderson, "The use of multiple internal reflection on extrinsic silicon infrared detection," IEEE Trans. Electron. Devices ED-27, 62-65 (1980).

J. Appl. Phys. (1)

R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, "Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses," J. Appl. Phys. 93, 2626-2629 (2003).
[Crossref]

Nucl. Instrum. Methods A (1)

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, and G. Entine, "Radiation detection performance of very high gain avalanche photodiodes," Nucl. Instrum. Methods A 353, 176-179 (1994).
[Crossref]

Nucl. Instrum. Methods. A (1)

R. Farrell, K. Shah, K. Vanderpuye, R. Grazioso, R. Myers, and G. Entine, "APD arrays and large area APDs via a new planar processing," Nucl. Instrum. Methods. A 442, 171-178 (2000).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

E. Janzén, R. Stedman, G. Grossman, and H. G. Grimmeiss, "High-resolution studies of sulfur- and selenium-related donor center in silicon," Phys. Rev. B 29, 1907-1918 (1984).
[Crossref]

Proc. SPIE (1)

R. Redus and R. Farrell, "Gain and noise in very high gain avalanche photodiodes: theory and experiment," in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover and F. P. Doty, eds., Proc. SPIE 2859, 288-297 (1996).
[Crossref]

Other (2)

R. Farrell, R. H. Redus, J. S. Gordon, and P. Gothoskar, "High gain APD array for photon detection," in Photodetectors and Power Meters II, K. Muray and K. J. Kaufmann, eds., Proc. SPIE 2550, 266-273 (1995).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Picture of two microstructured APD arrays prior to packaging. Structuring was performed with an 800   nm fs laser operating at a fluence of 3.5   kJ / m 2 in an atmosphere of SF 6 . The array on the right had four different structured regions with a pulse number ranging from 0 to 300. The shiny area is the bare silicon.

Fig. 2
Fig. 2

(Color online) Quantum efficiency versus wavelength for a single-element APD that was partially microstructured. The structured region shows an enhanced signal in the near-IR but reduced responsivity below 950   nm . Data were recorded with a 200   V bias applied to the APD.

Fig. 3
Fig. 3

(Color online) QE versus wavelength for an unstructured APD and two APDs annealed at high temperatures. The thermal annealing further enhances the near-IR response, while annealing at 1173   K results in the improved response in the visible spectrum.

Fig. 4
Fig. 4

(Color online) APD gain as a function of the applied bias for structured APD pixels. The gain dependence on the bias was nearly identical to the unstructured APDs for both 632 and 1060   nm .

Fig. 5
Fig. 5

(Color online) Response of a microstructured and unstructured APD to a subnanosecond pulse of radiation at (a) 532   nm and (b) 1064   nm . The response of the structured APD was nearly identical to the unstructured detector at all the tested bias settings. No amplification electronics were used in this measurement.

Fig. 6
Fig. 6

(Color online) APD signal strength due to 1060   nm illumination as a function of temperature. The unity-gain signal (200 V bias) was recorded as the detector warmed from 100   K . Both the microstructured and unstructured detectors had a similar dependence.

Tables (1)

Tables Icon

Table 1 Effect of Processing Conditions on the QE at 1064 nm

Metrics