Abstract

We performed extensive bidirectional reflectance measurements on dry, wet, and submerged particulate layers with various albedos to investigate the darkening effect caused by wetting with fluids. It was found that, in addition to the reduction of the refractive index contrast when there is a pore liquid (wetted), the concentration of translucent grains in a particulate layer and the surface roughness conditions of the individual grains make important contributions to the wetting-induced darkening effect. Reflectance measurements on glass–sediment mixtures confirmed that, as the concentration of translucent particles increases, the reflectance of the dry layers increases while that of the wetted layers decreases. Measurements indicate that neither the prediction made by the theory of Twomey et al. [Appl. Opt. 25, 431 (1986)] nor that of Lekner and Dorf [Appl. Opt. 27, 1278 (1988)] is sufficient.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren, Clouds in a Glass of Beer--Simple Experiments in Atmospheric Physics (Wiley, 1987).
  2. S. A. Twomey, C. F. Bohren, and J. L. Mergenthaler, "Reflectance and albedo differences between wet and dry surfaces," Appl. Opt. 25, 431-437 (1986).
    [CrossRef] [PubMed]
  3. K. C. Jezek and G. Koh, "Effects of water and ice layers on the scattering properties of diffuse reflectors," Appl. Opt. 26, 5143-5147 (1987).
    [CrossRef] [PubMed]
  4. G. Xu, M. Tazawa, P. Jin, and K. Yoshimura, "Diffuse reflection of ceramics coated with dielectric thin films," Appl. Opt. 42, 1352-1359 (2003).
    [CrossRef] [PubMed]
  5. J. Lekner and M. C. Dorf, "Why some things are darker when wet," Appl. Opt. 27, 1278-1280 (1988).
    [CrossRef] [PubMed]
  6. A. Angstrom, "The albedo of various surfaces of ground," Geogr. Ann. 7, 323-342 (1925).
    [CrossRef]
  7. H. Zhang, K. J. Voss, R. P. Reid, and E. M. Louchard, "Bidirectional reflectance measurements of sediments in the vicinity of Lee Stocking Island, Bahamas," Limnol. Oceanogr. 48, 380-389 (2003).
    [CrossRef]
  8. H. Zhang, K. J. Voss, and R. P. Reid, "Determining the influential depth of sediment particles by BRDF measurements," Opt. Express 11, 2654-2665 (2003).
    [CrossRef] [PubMed]
  9. K. J. Voss, A. L. Chapin, M. Monti, and H. Zhang, "Instrument to measure the bidirectional reflectance distribution function of surfaces," Appl. Opt. 39, 6197-6206 (2000).
    [CrossRef]
  10. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press 1993).
  11. K. J. Voss and H. Zhang, "Bidirectional reflectance of dry and submerged Labsphere Spectralon plaque," Appl. Opt. 45, 7924-7927 (2006).
    [CrossRef] [PubMed]
  12. M. U. Vera, P. A. Lemieux, and D. J. Durian, "Angular distri-bution of diffusely backscattered light," J. Opt. Soc. Am. A 14, 2800-2808 (1997).
    [CrossRef]
  13. C. F. Bohren, "Multiple scattering and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
    [CrossRef]
  14. A. Macke, M. I. Mishchenko, K. Muinonen, and B. E. Carlson, "Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method," Opt. Lett. 20, 1934-1936 (1995).
    [CrossRef] [PubMed]
  15. B. Hapke, "Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering," Icarus 157, 523-534 (2002).
    [CrossRef]
  16. M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
    [CrossRef]
  17. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, "Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media," Appl. Opt. 27, 2502-2509 (1988).
    [CrossRef] [PubMed]
  18. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emissions by Small Particles (Cambridge U. Press, 2002).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  20. B. van Ginneken, M. Stavridi, and J. J. Koenderink, "Diffuse and specular reflectance from rough surfaces," Appl. Opt. 37, 130-138 (1998).
    [CrossRef]

2006 (1)

2003 (3)

2002 (1)

B. Hapke, "Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering," Icarus 157, 523-534 (2002).
[CrossRef]

2000 (1)

1999 (1)

M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1988 (2)

1987 (2)

1986 (1)

1925 (1)

A. Angstrom, "The albedo of various surfaces of ground," Geogr. Ann. 7, 323-342 (1925).
[CrossRef]

Bohren, C. F.

C. F. Bohren, "Multiple scattering and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
[CrossRef]

S. A. Twomey, C. F. Bohren, and J. L. Mergenthaler, "Reflectance and albedo differences between wet and dry surfaces," Appl. Opt. 25, 431-437 (1986).
[CrossRef] [PubMed]

C. F. Bohren, Clouds in a Glass of Beer--Simple Experiments in Atmospheric Physics (Wiley, 1987).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Carlson, B. E.

Chapin, A. L.

Dlugach, J. M.

M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Dorf, M. C.

Durian, D. J.

Hapke, B.

B. Hapke, "Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering," Icarus 157, 523-534 (2002).
[CrossRef]

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press 1993).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Jayaweera, K.

Jezek, K. C.

Jin, P.

Koenderink, J. J.

Koh, G.

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emissions by Small Particles (Cambridge U. Press, 2002).

Lekner, J.

Lemieux, P. A.

Louchard, E. M.

H. Zhang, K. J. Voss, R. P. Reid, and E. M. Louchard, "Bidirectional reflectance measurements of sediments in the vicinity of Lee Stocking Island, Bahamas," Limnol. Oceanogr. 48, 380-389 (2003).
[CrossRef]

Macke, A.

Mergenthaler, J. L.

Mishchenko, M. I.

M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

A. Macke, M. I. Mishchenko, K. Muinonen, and B. E. Carlson, "Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method," Opt. Lett. 20, 1934-1936 (1995).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emissions by Small Particles (Cambridge U. Press, 2002).

Monti, M.

Muinonen, K.

Reid, R. P.

H. Zhang, K. J. Voss, and R. P. Reid, "Determining the influential depth of sediment particles by BRDF measurements," Opt. Express 11, 2654-2665 (2003).
[CrossRef] [PubMed]

H. Zhang, K. J. Voss, R. P. Reid, and E. M. Louchard, "Bidirectional reflectance measurements of sediments in the vicinity of Lee Stocking Island, Bahamas," Limnol. Oceanogr. 48, 380-389 (2003).
[CrossRef]

Stamnes, K.

Stavridi, M.

Tazawa, M.

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emissions by Small Particles (Cambridge U. Press, 2002).

Tsay, S. C.

Twomey, S. A.

van Ginneken, B.

Vera, M. U.

Voss, K. J.

Wiscombe, W.

Xu, G.

Yanovitskij, E. G.

M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Yoshimura, K.

Zakharova, N. T.

M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Zhang, H.

Am. J. Phys. (1)

C. F. Bohren, "Multiple scattering and some of its observable consequences," Am. J. Phys. 55, 524-533 (1987).
[CrossRef]

Appl. Opt. (8)

Geogr. Ann. (1)

A. Angstrom, "The albedo of various surfaces of ground," Geogr. Ann. 7, 323-342 (1925).
[CrossRef]

Icarus (1)

B. Hapke, "Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering," Icarus 157, 523-534 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

M. I. Mishchenko, J. M. Dlugach, E. G. Yanovitskij, and N. T. Zakharova, "Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces," J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999).
[CrossRef]

Limnol. Oceanogr. (1)

H. Zhang, K. J. Voss, R. P. Reid, and E. M. Louchard, "Bidirectional reflectance measurements of sediments in the vicinity of Lee Stocking Island, Bahamas," Limnol. Oceanogr. 48, 380-389 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press 1993).

C. F. Bohren, Clouds in a Glass of Beer--Simple Experiments in Atmospheric Physics (Wiley, 1987).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emissions by Small Particles (Cambridge U. Press, 2002).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Three dry and water wetted typical benthic sediment samples. Open circles are dry and solid circles are water wetted.

Fig. 2
Fig. 2

Albedos of dry, submerged, water, and glycerin wetted Sample A at eight illumination angles.

Fig. 3
Fig. 3

Six sediment samples: dry, submerged, water, and glycerin wetted, symbols as in Fig. 2. For Black Sand the submerged albedo is not shown.

Fig. 4
Fig. 4

REFF versus the Glass concentration and g phase angle: (a) normal incidence, dry; (b) normal incidence, wet; (c) 65° incidence, dry; (d) 65° incidence, wet.

Fig. 5
Fig. 5

Dry, water wetted, and submerged-in-water albedos of Sample A–Glass mixtures at (a) normal incidence and (b) 65° incidence.

Fig. 6
Fig. 6

Predictions of intimate mixture formula for diffuse reflectance (albedo at 60° incidence) of Sample A–Glass mixtures.

Fig. 7
Fig. 7

Ratio of dry and wet albedos averaged over eight illumination angles versus translucent particle concentrations.

Fig. 8
Fig. 8

Wetting predictions made by TBM and LD models with natural sediments. The long dashed straight line is dry = wet.

Fig. 9
Fig. 9

Numerical check of the TBM model on hypothetical layers composed of spherical grains having a power-law size distribution with a mean radius of 100   μm and a variance of 0 .1:   , dry layer with refractive index n = 1.6 ; ■, wet layer with n = 1.2 ; solid curve, result of fitting albedos to the TBM model; dashed curve, the predicted values made by TBM. The imaginary refractive index k is indicated in each plot.

Tables (1)

Tables Icon

Table 1 Single-Scattering Albedo (SSALB) and Asymmetry Parameter ξ Values a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

REFF ( θ i , ϕ i ; θ v , ϕ v ) = r S ( θ i , ϕ i ; θ v , ϕ v ) r L ( θ i ) ,
r S ( θ i , ϕ i ; θ v , ϕ v ) = L r ( θ v , ϕ v ) E i ( θ i , ϕ i ) .
r L = μ 0 π ,
REFF ( θ i , ϕ i ; θ v , ϕ v ) = π r S ( θ i , ϕ i ; θ v , ϕ v ) μ 0 .
g = cos 1 [ cos θ i cos θ v + sin θ i sin θ v cos ( ϕ v ϕ i ) ] ,
α ( θ i ) = π 1 2 π π / 2   REFF ( θ v , ϕ v ) cos θ v sin θ v d θ v d ϕ v
α AM = F 1 α 1 + F 2 α 2 ,
ϖ = ϖ 1 + ε ϖ 2 1 + ε ,
ε = N 2 σ 2 N 1 σ 1 ,
ε 1 glass% glass% ,
ϖ * = 1 ξ 1 ξ ϖ ϖ ,
ξ = ( ϖ ϖ 2 ) ϖ 1 ξ 1 ( ϖ ϖ 1 ) ϖ 2 ξ 2 ( ϖ 1 ϖ 2 ) ϖ ,
α ( 60 ° ) r 0 = 1 1 ϖ * 1 + 1 ϖ * .
REFF = ϖ * 4 ( μ + μ 0 ) H ( μ ) H ( μ 0 ) ,
α ( μ 0 ) = 1 1 ϖ * H ( μ 0 ) ,

Metrics