Abstract

A multiline absorption spectroscopy technique was investigated based on the single-line absorption spectroscopy technique. An open-path methane-detecting system was designed. An LED was used as a broadband source, and a Fabry–Perot interferometer whose transmission peaks matched the methane R-branch absorption lines was used to enhance the detectable sensitivity. We demonstrate a minimum-detectable concentration of 7600 ± 10% ppm (parts per million) with a multiline differential absorption spectroscopy technique and a concentration of 1000 ± 10% ppm with a multiline wavelength modulation spectroscopy technique.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
    [CrossRef]
  2. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
    [CrossRef]
  3. B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
    [CrossRef]
  4. Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).
  5. H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
    [CrossRef]
  6. hitran database 2004.
  7. W. Jin, G. Stewart, and B. Culshaw, "Absorption measurement of methane gas with a broadband light source and interferometric signal processing," Opt. Lett. 18, 1364-1366 (1993).
    [CrossRef] [PubMed]

2005 (2)

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

2004 (1)

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

2003 (1)

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

1993 (1)

Clark, H. Y.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Corner, L.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Courtois, D.

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

Culshaw, B.

Denzer, W.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Gibson, G.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Hancock, G.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Hodgkinson, J.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Hutchinson, A.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Islam, M.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Jan, Chen

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

jian-Guo, Liu

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

Jin, W.

Kapitanov, V. A.

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Murray, S.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Padgett, M.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Parvitte, B.

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

Peverall, R.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Ponmarev, Yu. N.

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

Pride, R.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Ritchie, G. A. D.

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Rui-Feng, Kan

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Stewart, G.

Strzoda, R.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

van Well, B.

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Wen-Qing, Liu

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Yu-Jun, Zhang

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

Zeninari, V.

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, "Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane," Chem. Phys. Lett. 399, 102-108 (2004).
[CrossRef]

Chin. Phys. Soc. (1)

Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Liu jian-Guo, and Chen Jan, "Absorption measurements of ambient methane with tunable diode laser," Chin. Phys. Soc. 54, 1927-1931 (2005).

Infrared Phys. Technol. (1)

V. Zeninari, B. Parvitte, D. Courtois, V. A. Kapitanov, and Yu. N. Ponmarev, "Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor," Infrared Phys. Technol. 44, 253-261 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

B. van Well, S. Murray, J. Hodgkinson, R. Pride, R. Strzoda, G. Gibson, and M. Padgett, "An open-path, hand-held laser system for the detection of methane gas," J. Opt. A: Pure Appl. Opt. 7, 420-424 (2005).
[CrossRef]

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, "Near- and mid-infrared laser-optical sensors for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Opt. Lett. (1)

Other (1)

hitran database 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Methane 2 ν 3 R-branch absorption spectrum at 1650   nm .

Fig. 2
Fig. 2

Transmission peaks of the interferometer (a) do not coincide with the methane absorption peaks, and (b) do coincide with the methane absorption peaks. A and B stand for the transmission peaks of the F-P interferometer and the methane absorption peaks, respectively.

Fig. 3
Fig. 3

Arrangement of multiline differential absorption spectroscopy for methane detection.

Fig. 4
Fig. 4

Lock-in amplifier signal versus control voltage.

Fig. 5
Fig. 5

Signal difference versus methane concentration.

Fig. 6
Fig. 6

Arrangement of multiline wavelength modulation spectroscopy.

Fig. 7
Fig. 7

2 f signal versus methane concentration.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( λ 1 ) = I 0 ( λ 1 ) exp [ - L C α 1 ( λ 1 ) ] .
I 2 ( λ 2 ) = I 0 ( λ 2 ) exp [ L C α 2 ( λ 2 ) ] .
C = ln [ I 2 ( λ 2 ) / I 1 ( λ 1 ) ] / [ L α 1 ( λ 1 ) ] .

Metrics