Abstract

We present experimental results on the intracavity generation of radially polarized light by incorporation of a polarization-selective mirror in a CO2-laser resonator. The selectivity is achieved with a simple binary dielectric diffraction grating etched in the backsurface of the mirror substrate. Very high polarization selectivity was achieved, and good agreement of simulation and experimental results is shown. The overall radial polarization purity of the generated laser beam was found to be higher than 90%.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999).
    [CrossRef]
  2. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
    [CrossRef] [PubMed]
  3. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
    [CrossRef]
  4. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
    [CrossRef] [PubMed]
  5. Q. Zahn, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
    [CrossRef]
  6. M. E. Marhic and E. Garmire, "Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38, 743-745 (1981).
    [CrossRef]
  7. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  8. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
    [CrossRef]
  9. Z. Bomzon, V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings," Appl. Phys. Lett. 79, 1587-1589 (2001).
    [CrossRef]
  10. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
    [CrossRef]
  11. Ch. Tsai, U. Levy, L. Pang, and Y. Fainman, "Form-birefringent space variant inhomogeneous medium element for shaping point-spread functions," Appl. Opt. 45, 1777-1783 (2006).
    [CrossRef] [PubMed]
  12. Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
    [CrossRef]
  13. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
    [CrossRef] [PubMed]
  14. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
    [CrossRef]
  15. T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
    [CrossRef]
  16. R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, "Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity," U.S. Patent 6191890 B1 (20 February 2001).
  17. D. Delbeke, R. Baets, and P. Muys, "Polarization selective beamsplitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004).
    [CrossRef] [PubMed]
  18. E. Sziklas and A. Siegman, "Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method," Appl. Opt. 14, 1874-1889 (1975).
    [CrossRef] [PubMed]

2006

2005

Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
[CrossRef] [PubMed]

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

2004

2002

2001

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Z. Bomzon, V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings," Appl. Phys. Lett. 79, 1587-1589 (2001).
[CrossRef]

2000

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

1999

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

1997

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

1995

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

1990

1981

M. E. Marhic and E. Garmire, "Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38, 743-745 (1981).
[CrossRef]

1975

1972

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Ahmed, M. A.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Baets, R.

D. Delbeke, R. Baets, and P. Muys, "Polarization selective beamsplitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004).
[CrossRef] [PubMed]

R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, "Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity," U.S. Patent 6191890 B1 (20 February 2001).

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Biener, G.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings," Appl. Phys. Lett. 79, 1587-1589 (2001).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Delbeke, D.

Demeulenaere, B.

R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, "Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity," U.S. Patent 6191890 B1 (20 February 2001).

Dhoedt, B.

R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, "Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity," U.S. Patent 6191890 B1 (20 February 2001).

Fainman, Y.

Fernow, R. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Garmire, E.

M. E. Marhic and E. Garmire, "Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38, 743-745 (1981).
[CrossRef]

Glur, H.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Goeman, S.

R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, "Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity," U.S. Patent 6191890 B1 (20 February 2001).

Graf, Th.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings," Appl. Phys. Lett. 79, 1587-1589 (2001).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Kim, G. H.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Kimura, W. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
[CrossRef] [PubMed]

Kleiner, V.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings," Appl. Phys. Lett. 79, 1587-1589 (2001).
[CrossRef]

Kozawa, Y.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Kusche, K. P.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Levy, U.

Liu, Y.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Marhic, M. E.

M. E. Marhic and E. Garmire, "Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38, 743-745 (1981).
[CrossRef]

Matsumura, K.

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Moser, T.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Mushiake, Y.

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Muys, P.

Nakajima, N.

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Pang, L.

Parriaux, O.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Pigeon, F.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Pogorelsky, I. V.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Romano, V.

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Romea, R. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Sato, S.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Siegman, A.

Steinhauer, L. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Sziklas, E.

Tidwell, S. C.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

Tsai, Ch.

Wang, X.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Zahn, Q.

Appl. Opt.

Appl. Phys. B

T. Moser, H. Glur, V. Romano, M. A. Ahmed, F. Pigeon, O. Parriaux, and Th. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B 80, 707-713 (2005).
[CrossRef]

Appl. Phys. Lett.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings," Appl. Phys. Lett. 79, 1587-1589 (2001).
[CrossRef]

M. E. Marhic and E. Garmire, "Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38, 743-745 (1981).
[CrossRef]

J. Phys. D: Appl. Phys.

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, "Laser acceleration of relativistic electrons using the inverse Cherenkov effect," Phys. Rev. Lett. 74, 546-549 (1995).
[CrossRef] [PubMed]

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Proc. IEEE

Y. Mushiake, K. Matsumura, and N. Nakajima, "Generation of radially polarized optical beam mode by laser oscillation," Proc. IEEE 60, 1107-1109 (1972).
[CrossRef]

Other

R. Baets, B. Demeulenaere, B. Dhoedt, and S. Goeman, "Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity," U.S. Patent 6191890 B1 (20 February 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simulation of the zero-order (a) TE reflectivity and (b) TM reflectivity over a large h and Λ range (normal incidence, f = 0.5 , n 1 = 3.27 , n 2 = 1 ).

Fig. 2
Fig. 2

Conceptual sketch of the radial polarizer based on a GIRO grating (a) cross section; (b) top view.

Fig. 3
Fig. 3

SEM picture of a radial GIRO grating etched in a 3   mm thick GaAs waver.

Fig. 4
Fig. 4

SEM picture of a cut of a realized radial GIRO grating.

Fig. 5
Fig. 5

Reflection and transmission measurement of the GIRO.

Fig. 6
Fig. 6

CO 2 laser setup used to generate radial polarization.

Fig. 7
Fig. 7

Intensity distribution of the radially polarized CO 2 laser beam: (a) without polarizer, and through a polarizer oriented (b) vertically, (c) at 45°, and (d) horizontally.

Fig. 8
Fig. 8

Horizontal cross section of the radially polarized doughnut mode. Comparison of the experimental data, the theoretical TEM 01 mode, and the Fox–Li simulation taking the diffraction losses into account.

Fig. 9
Fig. 9

Comparison of the output power of the resonator with a standard HR mirror and with the GIRO.

Tables (3)

Tables Icon

Table 1 GIRO Grating Designs Based on the Design Rules and on Calculations with RCWA a

Tables Icon

Table 2 Comparison of the Simulated Parameters and the Fabricated Design at the Edge of the Grating a

Tables Icon

Table 3 Simulated Parameters Based on the Measured Parameters at the Center of the Grating a

Equations (81)

Equations on this page are rendered with MathJax. Learn more.

CO 2
90 %
CO 2
TEM 01
TEM 01
CO 2
100 %
CO 2
f 0.5 ,
h / λ 3 / 2 ( 3 n 1 2 + n 2 2 ) 1 / 2 n 2 ,
Λ / λ 2 ( n 1 2 n 2 2 ) 1 / 2 ,
n 1
n 2
CO 2
GaAs ( n 2 = 3.27 )
λ = 10.6 μ m
f = 0 .5
n 1 = 3.27
n 2 = 1
( > 99 % )
( < 1 % )
100 %
CO 2
( λ = 310   nm )
SiCl 4 / Ar
16   mTorr
150   W
50   W
CO 2
CO 2
Λ = 6.72 μ m
h = 3.7 μ m
h = 3.3 μ m
f = 0.47
± 0.01
( α < 1 ° )
0.5 % / 1.5 %
CO 2
2.5 mm
80 %
3.7 μ m
94 %
± 2 %
± 0.01
CO 2
80 %
CO 2
5 %
90 %
96 %
( 90 % )
100 %
CO 2
CO 2
R 0 TM
R 0 TE
f = 0.5
n 1 = 3.27
n 2 = 1
λ = 10.6 μ m
R 0 TM
T 0 TM
R 0 TE
T 0 TE
λ = 10.6 μ m
h = 3.7 μ m
Λ = 6.7 μ m
f = 0.47
R 0 TM
R 0 TE
λ = 10.6 μ m
h = 3.3 μ m
Λ = 6.72 μ m
f = 0.47
f = 0.5
n 1 = 3.27
n 2 = 1
3   mm
CO 2
CO 2
TEM 01

Metrics