Abstract

High-frequency modulation of laser output intensity is studied with asymmetric feedback induced by the misalignment of an external feedback reflector in an orthogonal polarized dual frequency laser. The fringe frequency of the optical feedback system is seven times higher than that of a conventional optical feedback system, due to multiple feedback effects. The output characteristics of two orthogonal polarized modes are also investigated. Mode competition is observed between the two modes. When initial intensities of the two modes are unequal, the mode competition will be strong. The difference in initial intensity between the two orthogonally polarized modes plays an important role in the mode competition with optical feedback. Experimental results are presented, as well as a theoretical explanation. The high-frequency modulation of laser intensity can greatly increase the resolution of an optical feedback sensing system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).
  2. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
    [CrossRef]
  3. D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
    [CrossRef]
  4. P. J. D. Groot, G. M. Gallatin, and S. H. Macomber, "Ranging and velocimetry signal generation in a backscatter-modulated laser diode," Appl. Opt. 27, 4475-4480 (1988).
    [CrossRef] [PubMed]
  5. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
    [CrossRef] [PubMed]
  6. R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
    [CrossRef]
  7. W. Mao, S. Zhang, and L. Fei, "Intensity tuning characteristics of double-mode He-Ne lasers with optical feedback," Chin. Phys. 15, 2036-2041 (2006).
    [CrossRef]
  8. H. Huan, M. Wang, and D. Guo, "Self-mixing interference effect of DFB semiconductor lasers," Appl. Phys. B 79, 325-330 (2004).
    [CrossRef]
  9. W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
    [CrossRef]
  10. Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
    [CrossRef]
  11. J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984).
    [CrossRef] [PubMed]
  12. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).
    [CrossRef] [PubMed]
  13. R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
    [CrossRef]
  14. G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
    [CrossRef]
  15. M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
    [CrossRef]
  16. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
    [CrossRef]
  17. W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express 14, 182-189 (2006).
    [CrossRef] [PubMed]
  18. F. Gouaux, N. Servagent, and T. Bosch, "Absolute distance measurement with an optical feedback interferometer," Appl. Opt. 37, 6684-6689 (1998).
    [CrossRef]
  19. M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
    [CrossRef]
  20. C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
    [CrossRef]
  21. L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
    [CrossRef] [PubMed]
  22. G. Liu, S. Zhang, J. Zhu, and Y. Li, "Optical feedback laser with a quartz crystal plate in the external cavity," Appl. Opt. 42, 6636-6639 (2003).
    [CrossRef] [PubMed]
  23. X. Wan, S. Zhang, and G. Liu, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
    [CrossRef]
  24. W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
    [CrossRef]
  25. S. Zhang, M. Wu, and G. Jin, "Birefringence tuning double frequency He-Ne laser," Appl. Opt. 29, 1265-1267 (1990).
    [CrossRef] [PubMed]
  26. Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
    [CrossRef]
  27. D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
    [CrossRef]
  28. R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
    [CrossRef]

2006 (4)

W. Mao, S. Zhang, and L. Fei, "Intensity tuning characteristics of double-mode He-Ne lasers with optical feedback," Chin. Phys. 15, 2036-2041 (2006).
[CrossRef]

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express 14, 182-189 (2006).
[CrossRef] [PubMed]

2005 (2)

L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
[CrossRef] [PubMed]

X. Wan, S. Zhang, and G. Liu, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

2004 (3)

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

H. Huan, M. Wang, and D. Guo, "Self-mixing interference effect of DFB semiconductor lasers," Appl. Phys. B 79, 325-330 (2004).
[CrossRef]

2003 (2)

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Optical feedback laser with a quartz crystal plate in the external cavity," Appl. Opt. 42, 6636-6639 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

2001 (1)

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

1999 (1)

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

1998 (1)

1996 (1)

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

1995 (1)

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

1993 (1)

1990 (1)

1989 (1)

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

1988 (1)

1986 (2)

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Appl. Opt. 25, 1417-1419 (1986).
[CrossRef] [PubMed]

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

1984 (2)

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984).
[CrossRef] [PubMed]

1980 (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

1963 (1)

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Addy, R. C.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Bosch, T.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

F. Gouaux, N. Servagent, and T. Bosch, "Absolute distance measurement with an optical feedback interferometer," Appl. Opt. 37, 6684-6689 (1998).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

Churnside, J. H.

Cui, L.

Deng, K.

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Donati, S.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Fei, L.

W. Mao, S. Zhang, and L. Fei, "Intensity tuning characteristics of double-mode He-Ne lasers with optical feedback," Chin. Phys. 15, 2036-2041 (2006).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
[CrossRef] [PubMed]

Gallatin, G. M.

Giulian, G.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Giuliani, G.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

Gouaux, F.

Grattan, K. T. V.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Groot, P. J. D.

Guo, D.

H. Huan, M. Wang, and D. Guo, "Self-mixing interference effect of DFB semiconductor lasers," Appl. Phys. B 79, 325-330 (2004).
[CrossRef]

Guo, J.

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

Huan, H.

H. Huan, M. Wang, and D. Guo, "Self-mixing interference effect of DFB semiconductor lasers," Appl. Phys. B 79, 325-330 (2004).
[CrossRef]

Jaskorzynska, B.

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

Jin, G.

Jin, Y.

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

King, P. G. R.

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Kobayashi, K.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Lai, G.

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Lenstra, D.

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

Li, J.

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

Li, Y.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
[CrossRef] [PubMed]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Optical feedback laser with a quartz crystal plate in the external cavity," Appl. Opt. 42, 6636-6639 (2003).
[CrossRef] [PubMed]

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

Liu, G.

X. Wan, S. Zhang, and G. Liu, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Optical feedback laser with a quartz crystal plate in the external cavity," Appl. Opt. 42, 6636-6639 (2003).
[CrossRef] [PubMed]

Lu, C.

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Macomber, S. H.

Mao, W.

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

W. Mao, S. Zhang, and L. Fei, "Intensity tuning characteristics of double-mode He-Ne lasers with optical feedback," Chin. Phys. 15, 2036-2041 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express 14, 182-189 (2006).
[CrossRef] [PubMed]

Mcinerney, J.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Mochizuki, A.

Norgia, M.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Osinski, M.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Otsuka, K.

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

Palmer, A. W.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Park, J.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Seo, D.

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

Servagent, N.

Shinohara, S.

Steward, G. J.

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Sumi, M.

Tan, Y.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

Van, V. M.

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

Wan, X.

X. Wan, S. Zhang, and G. Liu, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

Wang, J.

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Wang, M.

H. Huan, M. Wang, and D. Guo, "Self-mixing interference effect of DFB semiconductor lasers," Appl. Phys. B 79, 325-330 (2004).
[CrossRef]

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

Wu, M.

Yoshida, H.

Yu, Y.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

Zhang, L.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

Zhang, S.

W. Mao, S. Zhang, and L. Fei, "Intensity tuning characteristics of double-mode He-Ne lasers with optical feedback," Chin. Phys. 15, 2036-2041 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express 14, 182-189 (2006).
[CrossRef] [PubMed]

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
[CrossRef] [PubMed]

X. Wan, S. Zhang, and G. Liu, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Optical feedback laser with a quartz crystal plate in the external cavity," Appl. Opt. 42, 6636-6639 (2003).
[CrossRef] [PubMed]

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

S. Zhang, M. Wu, and G. Jin, "Birefringence tuning double frequency He-Ne laser," Appl. Opt. 29, 1265-1267 (1990).
[CrossRef] [PubMed]

Zhu, J.

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
[CrossRef] [PubMed]

G. Liu, S. Zhang, J. Zhu, and Y. Li, "Optical feedback laser with a quartz crystal plate in the external cavity," Appl. Opt. 42, 6636-6639 (2003).
[CrossRef] [PubMed]

Appl. Opt. (7)

Appl. Phys. B (1)

H. Huan, M. Wang, and D. Guo, "Self-mixing interference effect of DFB semiconductor lasers," Appl. Phys. B 79, 325-330 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

C. Lu, J. Wang, and K. Deng, "Imaging and profiling surface microstructures with noninterferometric confocal laser feedback," Appl. Phys. Lett. 66, 2022-2024 (1995).
[CrossRef]

Chin. Phys. (2)

W. Mao and S. Zhang, "Strong optical feedback in birefringent dual frequency laser," Chin. Phys. 15, 340-346 (2006).
[CrossRef]

W. Mao, S. Zhang, and L. Fei, "Intensity tuning characteristics of double-mode He-Ne lasers with optical feedback," Chin. Phys. 15, 2036-2041 (2006).
[CrossRef]

Chin. Phys. Lett. (2)

W. Mao, S. Zhang, L. Zhang, J. Zhu, and Y. Li, "Optical feedback characteristics in He-Ne dual frequency lasers," Chin. Phys. Lett. 23, 1188-1191 (2006).
[CrossRef]

Y. Jin, S. Zhang, Y. Li, J. Guo, and J. Li, "Zeeman-birefringence He-Ne dual frequency lasers," Chin. Phys. Lett. 18, 533-536 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Seo, J. Park, J. Mcinerney, and M. Osinski, "Multiple feedback effects in asymmetric external cavity semiconductor lasers," IEEE J. Quantum Electron. 25, 2229-2237 (1989).
[CrossRef]

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor laser based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

J. Lightwave Technol. (3)

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, "Effects of external reflector alignment in sensing applications of optical feedback in laser diodes," J. Lightwave Technol. 14, 2672-2676 (1996).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A, Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

M. Wang and G. Lai, "A self-mixing interferometer using an external dual cavity," Meas. Sci. Technol. 14, 1025-1031 (2003).
[CrossRef]

New Sci. (1)

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Opt. Commun. (1)

M. Wang and G. Lai, "Self-mixing microscopic interferometer for the measurement of microprofile," Opt. Commun. 238, 237-244 (2004).
[CrossRef]

Opt. Eng. (1)

X. Wan, S. Zhang, and G. Liu, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

L. Fei, S. Zhang, Y. Li, and J. Zhu, "Polarization control in a He-Ne laser using birefringence feedback," Opt. Express. 13, 3117-3122 (2005).
[CrossRef] [PubMed]

Physica B & C (1)

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. M 1 , M 2 , mirrors; QC, quartz crystal; T, discharge tube; M 3 , external feedback mirror; PZT 1 , PZT 2 , piezoelectric transducers; BS 1 , BS 2 , beam splitters; W, Wollaston prism; D 1 , D 2 , D 3 , photoelectric detectors; SI, FP scanning interferometer.

Fig. 2
Fig. 2

(Color online) Intensity modulation curves of the o-light, the e-light, and the total light, when the initial intensity of the o-light is equal to that of the e-light.

Fig. 3
Fig. 3

(Color online) Intensity modulation curves of the o-light, the e-light, and the total light, when the initial intensity of the o-light is bigger than that of the e-light.

Fig. 4
Fig. 4

(Color online) Simulation of the intensity modulation curves of the o-light, the e-light, and the total light, when the initial intensity of the o-light is equal to that of the e-light in the absence of optical feedback.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = r 1 r 2 exp ( j 4 π ν n L c + 2 g L ) E 0 ( t ) + r 1 t 2 r 3 ξ exp ( j 4 π ν n L + l c + 2 g L ) E 0 ( t ) ,
r 1 r 2 exp ( j 4 π ν n L c + 2 g L ) [ 1 + β exp ( j 4 πν l c ) ] = 1 ,
Δ g = β 2 L cos ( 4 π ν l / c ) .
Δ g o = Δ g e = β cos ( 4 π ν l / c ) / ( 2 L ) ,
I = I 0 ( 1 k Δ g ) ,
I o = I 0 o [ 1 + k ζ cos ( φ o ) / ( 2 L ) ] ,
I e = I 0 e [ 1 k ζ cos ( φ e ) / ( 2 L ) ] ,
r eff = r 2 t 2 2 r 3 q = 1 m ( r 2 r 3 ) q 1 f q exp ( j ω τ q ) ,
r eff = r 2 t 2 2 r 3 [ f 1 exp ( j ω τ 1 ) + ( r 2 r 3 ) 6 f 7 exp ( j ω τ 7 ) ] .
I o = I 0 o { 1 + k [ ζ 1 cos ( φ o ) + ζ 7 cos ( 7 φ o ) ] / ( 2 L ) } ,
I e = I 0 e { 1 k [ ζ 1 cos ( φ e ) + ζ 7 cos ( 7 φ e ) ] / ( 2 L ) } .

Metrics