Abstract

Networks of sensors are envisaged to be major participants in future data-gathering systems for civilian and military applications, including medical and environmental monitoring and surveillance, home security, agriculture, and industry. Typically, a very large number of miniature sensing and communicating nodes are distributed ad hoc at the location of interest, where they establish a network and wirelessly communicate sensed data either to one another or to a base station using various network topologies. The optical modality is a potential solution for the links, due to the small and lightweight hardware and low power consumption, as well as other special features. Notably, the backscattering of light by molecules and aerosols in the atmosphere can function as a vehicle of communication in a way similar to the deployment of numerous tiny reflecting mirrors. The scattering of light at solar-blind ultraviolet wavelengths is of particular interest since scattering by atmospheric particles is significant and ambient solar interference is minimal. In this paper we derive a mathematical model of a simple and low-cost non-line-of-sight (NLOS) optical wireless sensor network operating in the solar-blind ultraviolet spectral range. The viability and limitations of the internode link are evaluated and found to facilitate miniature operational sensor networks.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
    [CrossRef]
  2. D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
    [CrossRef]
  3. R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
    [CrossRef]
  4. A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
    [CrossRef]
  5. B. R. Strickland, M. J. Lavan, E. Woodbridge, and V. Chan, "Effects of fog on the bit-error-rate of a free-space laser communication system," Appl. Opt. 38, 424-431 (1999).
    [CrossRef]
  6. D. Kedar and S. Arnon, "Backscattering-induced crosstalk in WDM optical wireless communication," J. Lightwave Technol. 23, 2023-2030 (2005).
    [CrossRef]
  7. D. Kedar and S. Arnon, "Optical wireless communication through fog in the presence of pointing errors," Appl. Opt. 42, 1987-1993 (2003).
    [CrossRef]
  8. D. Kedar and S. Arnon, "Optical wireless sensor network in multi-scattering channel:laboratory experiment," in Free Space Laser Communications V, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5892, 58920Y (2005).
    [CrossRef]
  9. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
    [CrossRef]
  10. D. L. Hutt and D. H. Tofsted, "Effect of atmospheric turbulence on propagation of ultraviolet radiation," Opt. Laser Technol. 32, 39-48 (2000).
    [CrossRef]
  11. V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
    [CrossRef]
  12. J. L. Buften and R. S. Iyer, "Continuous wave lidar measurement of atmospheric visibility," Appl. Opt. 17, 265-271 (1978).
    [CrossRef]
  13. R. T. H. Collis and P. B. Russell, "Lidar measurement of particles and gases by elastic backscattering and differential absorption," Laser Monitoring of the Atmosphere, E.D.Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, 1976), Chap. 4.
  14. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Leningrad Gydrometeosdatt, 1986).

2005

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

D. Kedar and S. Arnon, "Optical wireless sensor network in multi-scattering channel:laboratory experiment," in Free Space Laser Communications V, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5892, 58920Y (2005).
[CrossRef]

D. Kedar and S. Arnon, "Backscattering-induced crosstalk in WDM optical wireless communication," J. Lightwave Technol. 23, 2023-2030 (2005).
[CrossRef]

2004

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

2003

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

D. Kedar and S. Arnon, "Optical wireless communication through fog in the presence of pointing errors," Appl. Opt. 42, 1987-1993 (2003).
[CrossRef]

2002

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
[CrossRef]

2001

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

2000

D. L. Hutt and D. H. Tofsted, "Effect of atmospheric turbulence on propagation of ultraviolet radiation," Opt. Laser Technol. 32, 39-48 (2000).
[CrossRef]

1999

1978

Adivarahan, V.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Arnon, S.

D. Kedar and S. Arnon, "Optical wireless sensor network in multi-scattering channel:laboratory experiment," in Free Space Laser Communications V, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5892, 58920Y (2005).
[CrossRef]

D. Kedar and S. Arnon, "Backscattering-induced crosstalk in WDM optical wireless communication," J. Lightwave Technol. 23, 2023-2030 (2005).
[CrossRef]

D. Kedar and S. Arnon, "Optical wireless communication through fog in the presence of pointing errors," Appl. Opt. 42, 1987-1993 (2003).
[CrossRef]

Buften, J. L.

Cardell-Oliver, R.

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

Chan, V.

Chitnis, A.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis and P. B. Russell, "Lidar measurement of particles and gases by elastic backscattering and differential absorption," Laser Monitoring of the Atmosphere, E.D.Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, 1976), Chap. 4.

Culler, D.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
[CrossRef]

Estrin, D.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
[CrossRef]

Hutt, D. L.

D. L. Hutt and D. H. Tofsted, "Effect of atmospheric turbulence on propagation of ultraviolet radiation," Opt. Laser Technol. 32, 39-48 (2000).
[CrossRef]

Iyer, R. S.

Kedar, D.

D. Kedar and S. Arnon, "Optical wireless sensor network in multi-scattering channel:laboratory experiment," in Free Space Laser Communications V, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5892, 58920Y (2005).
[CrossRef]

D. Kedar and S. Arnon, "Backscattering-induced crosstalk in WDM optical wireless communication," J. Lightwave Technol. 23, 2023-2030 (2005).
[CrossRef]

D. Kedar and S. Arnon, "Optical wireless communication through fog in the presence of pointing errors," Appl. Opt. 42, 1987-1993 (2003).
[CrossRef]

Khan, M. Asif

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Kranz, M.

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

Krekov, G. M.

V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Leningrad Gydrometeosdatt, 1986).

Last, M.

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

Lavan, M. J.

Liebowitz, B.

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

Maruska, H. P.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Mayer, K.

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

Maynard, J. A.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

Moriarty, D. T.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

Park, H.

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

Pister, K.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
[CrossRef]

Pister, K. S. J.

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

Reilly, D. M.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

Russell, P. B.

R. T. H. Collis and P. B. Russell, "Lidar measurement of particles and gases by elastic backscattering and differential absorption," Laser Monitoring of the Atmosphere, E.D.Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, 1976), Chap. 4.

Savvides, A.

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

Shatalov, M.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Smettem, K.

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

Strickland, B. R.

Strivastava, M. B.

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

Sukhatme, G.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
[CrossRef]

Sun, W. H.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Tofsted, D. H.

D. L. Hutt and D. H. Tofsted, "Effect of atmospheric turbulence on propagation of ultraviolet radiation," Opt. Laser Technol. 32, 39-48 (2000).
[CrossRef]

Warneke, B.

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

Woodbridge, E.

Wu, S.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

Zuev, V. E.

V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Leningrad Gydrometeosdatt, 1986).

Appl. Opt.

Appl. Phys. Lett.

V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004).
[CrossRef]

IEEE Comput.

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

IEEE Pervasive Comput.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput. 1, 59-69 (2002).
[CrossRef]

Intl. J. Distrib. Sensor Netw.

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

J. Lightwave Technol.

Mobile Netw. Appl.

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

Opt. Laser Technol.

D. L. Hutt and D. H. Tofsted, "Effect of atmospheric turbulence on propagation of ultraviolet radiation," Opt. Laser Technol. 32, 39-48 (2000).
[CrossRef]

Proc. SPIE

D. Kedar and S. Arnon, "Optical wireless sensor network in multi-scattering channel:laboratory experiment," in Free Space Laser Communications V, D. G. Voelz and J. C. Ricklin, eds., Proc. SPIE 5892, 58920Y (2005).
[CrossRef]

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

Other

R. T. H. Collis and P. B. Russell, "Lidar measurement of particles and gases by elastic backscattering and differential absorption," Laser Monitoring of the Atmosphere, E.D.Hinkley, ed., Vol. 14 of Topics in Applied Physics (Springer-Verlag, 1976), Chap. 4.

V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Leningrad Gydrometeosdatt, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Possible scenario; microsensors strewn ad hoc on the ground self-orientate to face vertically upward. Communication is achieved by virtue of backscatter from multiscattering environment.

Fig. 2
Fig. 2

Transmission of radiation at wavelengths 205 300   nm over 1   km range for standard atmosphere with four different aerosol compositions (from modtran).

Fig. 3
Fig. 3

Impulse responses:(a) for three node separations, H = 0 , base model atmosphere; (b) for four altitudes, d 0 = 0.5   m , base model atmosphere; (c) for two atmospheric models, H = 0 , d 0 = 0.5   m . Transmitter beam divergence half-angle = 0.5   rad , receiver FOV half-angle = 1 .

Fig. 4
Fig. 4

Graph showing average received power in a NLOS link operating in a multiscattering channel as a function of sensor node separation d 0 for two atmospheric models; transmitter beam divergence half-angle = 0.5   rad , receiver FOV half-angle = 1   rad , altitude H = 0 .

Fig. 5
Fig. 5

Graph showing average received power in a NLOS link operating in a multiscattering channel as a function of sensor node separation d 0 for three FOV half-angles; transmitter beam divergence half-angle = 0.5   rad , altitude H = 0 , global aerosol model.

Fig. 6
Fig. 6

Calculated bit-error-rate (BER) as a function of node separation for five different transmitter power–bandwidth combinations.

Tables (1)

Tables Icon

Table 1 Values of Atmospheric Parameters[14]

Equations (118)

Equations on this page are rendered with MathJax. Learn more.

200 280   nm
7 / 6
P R ( t ) z o P Tr ( t 2 z c ) [ β M ( z ) + β ^ A ( z ) ] ζ ( λ ) ξ ( z ) × exp ( 2 0 z α ( r ) d r ) A z 2  d z ,
P Tr
P Tr ( t 2 z c )
z / c
P Tr ( t 2 z c )
P Tr ( t ) = 2 P T k = A k u ( t k T ) ,
A k { 0 , 1 }
u ( t )
u ( t ) = { 0 t < 0 1 0 t T 0 t > T .
β M ( z )
β ^ A ( z )
ζ ( λ )
ξ ( z )
α ( r )
exp [ 2 0 z α ( r ) d r ]
P Tr
A / z 2
z = z o
z o
z o
z o
z o
ξ ( z )
ξ ( z ) = 1 π { cos 1 ( x T D T ) x T D T 1 ( x T D T ) 2 + ( D R D T ) 2 × cos 1 ( x R D R ) x R D R D T 2 1 ( x R D R ) 2 } ,
D T
D R
d T
x T
x R
x T = [ ( D T 2 ) 2 ( D R 2 ) 2 + d 0 2 ] d 0 1 ,
x R = [ ( D R 2 ) 2 ( D T 2 ) 2 + d 0 2 ] d 0 1 ,
d 0
ζ ( λ )
P R ( z ) A ζ ( λ ) [ β M ( H ) + β ^ A ( H ) ] P T × z o exp [ 2 α ( H ) z ] ξ ( z ) z 2 d z .
1 100 kbits / s
1 100 μs
s = P R ,
= q η h ν ,
σ TH 2 = 4 k T R B ,
BER = 1 2 erfc ( P R 2 2 σ TH ) ,
erfc ( x )
erfc ( x ) = 2 π x exp ( y 2 ) d y .
β ^ A ( H )
α ( H )
250   nm
1   km
1   km
1   km
200 300   nm
220   nm
λ = 250 nm
P T = 0.5   mW
1   mm
0.2   mm
0 .5   mrad
= 0.191
B = 1   kHz
T = 280   K
R = 200 Ω
1.0   rad
0 .7   rad
1 .3   rad
d 0
0 .05 0 .2   m
1 .3   rad
0 .5   mrad
P R ( z )
P R ( t )
t = 2 z / c
2.5   ns
1   kbit / s
10   cm
1 .2 × 10 11   W
20   cm
50   cm
250   nm
1   km
3   km
50   cm
10 9   W
0 .5   mW
1 .3   rad
1 .8 × 10 8   W
10 2
5   cm
10   cm
5   cm
10 7
0.2 kbit / s
5   cm
10 8
1   mW
1 kbit / s
5   mW
10 4
10 kbit / s
10   cm
1   kbit / s
5   mW
10 3
40   cm
205 300   nm
1   km
H = 0
d 0 = 0.5   m
H = 0
d 0 = 0.5   m
= 0.5   rad
= 1
d 0
= 0.5   rad
= 1   rad
H = 0
d 0
= 0.5   rad
H = 0

Metrics