Abstract

We demonstrate a wavelength-selective photodetector that combines a Fabry–Perot filtering cavity (FPC) with a taper absorption cavity (TAC). The taper cavity shows a nonresonant effect but exhibits an absorption enhancement effect, so that high speed, high quantum efficiency, wide tuning range, and an ultranarrow spectral linewidth can be achieved simultaneously. Device performance was theoretically investigated by including key factors such as taper angle, finite-size diffracting-beam input, and lateral walk-off in the taper cavity. The device was fabricated by bonding a GaAs-based FPC, which can be tuned via thermal-optic effect, with an InP-based TAC. An integrated device with a spectral linewidth of 0.6  nm (FWHM), a wavelength tuning range of 10 .2   nm (1518 .01528 .2   nm), a 3  dB bandwidth of 12   GHz, and a quantum efficiency of 70% was demonstrated, and the absorption layer thickness is only 0 .3   μm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
    [CrossRef]
  2. G. N. Rouskas and M. H. Ammar, "Multi-destination communication over tunable-receiver single-hop WDM networks," IEEE J. Sel. Areas Commun. 15, 501-511 (1997).
    [CrossRef]
  3. Y. Zhou, J. Cheng, and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strain InGaAs quantum wells," IEEE Photon. Technol. Lett. 12, 122-124 (2000).
    [CrossRef]
  4. H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
    [CrossRef]
  5. B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
    [CrossRef]
  6. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
    [CrossRef]
  7. T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
    [CrossRef]
  8. D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
    [CrossRef]
  9. X. Ren and J. C. Campbell, "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer," IEEE J. Quantum Electron. 32, 1903-1915 (1996).
    [CrossRef]
  10. K. Liu, Y. Huang, and X. Ren, "Theory and experiments of a three-cavity wavelength-selective photodetector," Appl. Opt. 39, 4263-4269 (2000).
    [CrossRef]
  11. S. Y. Hu, E. R. Hegblom, and L. A. Coldren, "Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications," Appl. Phys. Lett. 71, 178-180 (1997).
    [CrossRef]
  12. X. Ren and J. C. Campbell, "A novel structure: one-mirror-inclined three-mirror-cavity high performance photodetectors," in Technical Proceedings: International Topic Meeting on Photoelectronics (Beijing Institute of Technology, 1997), pp. 81-84.
  13. H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity," Electron. Lett. 39, 113-115 (2003).
    [CrossRef]
  14. C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
    [CrossRef]
  15. B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
    [CrossRef]
  16. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
    [CrossRef]
  17. J. Y. Lee, J. W. Hahn, and H.-W. Lee, "Spatiospectral transmission of a plane-mirror Fabry-Perot interferometer with nonuniform finite-size diffraction beam illuminations," J. Opt. Soc. Am. A 19, 973-984 (2002).
    [CrossRef]
  18. H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
    [CrossRef]
  19. H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
    [CrossRef]
  20. F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
    [CrossRef]

2006 (1)

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

2005 (1)

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

2004 (1)

H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
[CrossRef]

2003 (1)

H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity," Electron. Lett. 39, 113-115 (2003).
[CrossRef]

2002 (1)

2000 (3)

K. Liu, Y. Huang, and X. Ren, "Theory and experiments of a three-cavity wavelength-selective photodetector," Appl. Opt. 39, 4263-4269 (2000).
[CrossRef]

F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
[CrossRef]

Y. Zhou, J. Cheng, and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strain InGaAs quantum wells," IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

1999 (1)

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

1998 (2)

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

1997 (2)

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, "Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications," Appl. Phys. Lett. 71, 178-180 (1997).
[CrossRef]

G. N. Rouskas and M. H. Ammar, "Multi-destination communication over tunable-receiver single-hop WDM networks," IEEE J. Sel. Areas Commun. 15, 501-511 (1997).
[CrossRef]

1996 (1)

X. Ren and J. C. Campbell, "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer," IEEE J. Quantum Electron. 32, 1903-1915 (1996).
[CrossRef]

1994 (2)

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
[CrossRef]

1993 (1)

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

1991 (2)

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Ahadian, J. F.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Allerman, A. A.

Y. Zhou, J. Cheng, and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strain InGaAs quantum wells," IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

Ammar, M. H.

G. N. Rouskas and M. H. Ammar, "Multi-destination communication over tunable-receiver single-hop WDM networks," IEEE J. Sel. Areas Commun. 15, 501-511 (1997).
[CrossRef]

Arsenault, L.

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

Benyattou, T.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Blondeau, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Botchkarey, A. E.

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

Campbell, J. C.

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

X. Ren and J. C. Campbell, "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer," IEEE J. Quantum Electron. 32, 1903-1915 (1996).
[CrossRef]

X. Ren and J. C. Campbell, "A novel structure: one-mirror-inclined three-mirror-cavity high performance photodetectors," in Technical Proceedings: International Topic Meeting on Photoelectronics (Beijing Institute of Technology, 1997), pp. 81-84.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Cheng, J.

Y. Zhou, J. Cheng, and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strain InGaAs quantum wells," IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

Choy, H. K. H.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Chyi, J.-I.

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

Cocorullo, G.

F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
[CrossRef]

Coldren, L. A.

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, "Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications," Appl. Phys. Lett. 71, 178-180 (1997).
[CrossRef]

Corte, F. G. D.

F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
[CrossRef]

Deng, H.

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

Deng, Q.

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

Deppe, D. G.

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

Ebeling, K. J.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Fonstad, C. G.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Gailhanou, M.

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

Guillot, G.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Hahn, J. W.

Harbison, J. P.

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Hegblom, E. R.

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, "Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications," Appl. Phys. Lett. 71, 178-180 (1997).
[CrossRef]

Houdre, R.

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

Hu, S. Y.

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, "Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications," Appl. Phys. Lett. 71, 178-180 (1997).
[CrossRef]

Huang, H.

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
[CrossRef]

H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity," Electron. Lett. 39, 113-115 (2003).
[CrossRef]

Huang, Y.

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
[CrossRef]

H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity," Electron. Lett. 39, 113-115 (2003).
[CrossRef]

K. Liu, Y. Huang, and X. Ren, "Theory and experiments of a three-cavity wavelength-selective photodetector," Appl. Opt. 39, 4263-4269 (2000).
[CrossRef]

Huffaker, D. L.

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

Iodice, M.

F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
[CrossRef]

Jäger, R.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Kash, J. A.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
[CrossRef]

King, R.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Kishino, K.

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

Kisker, D. W.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
[CrossRef]

Knodl, T.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Kudari, A.

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

Leclercq, J. L.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Ledantec, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Lee, H.-W.

Lee, J. Y.

Liu, K.

Llegems, M.

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

Lullo, G.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Maeda, M. W.

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Morkoc, H.

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

Morkoc, H. H.

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

Oesterle, U.

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

Pan, J. L.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Pezeshki, B.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
[CrossRef]

Ram, R. J.

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Reed, J.

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

Ren, X.

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
[CrossRef]

H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity," Electron. Lett. 39, 113-115 (2003).
[CrossRef]

K. Liu, Y. Huang, and X. Ren, "Theory and experiments of a three-cavity wavelength-selective photodetector," Appl. Opt. 39, 4263-4269 (2000).
[CrossRef]

X. Ren and J. C. Campbell, "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer," IEEE J. Quantum Electron. 32, 1903-1915 (1996).
[CrossRef]

X. Ren and J. C. Campbell, "A novel structure: one-mirror-inclined three-mirror-cavity high performance photodetectors," in Technical Proceedings: International Topic Meeting on Photoelectronics (Beijing Institute of Technology, 1997), pp. 81-84.

Rendina, I.

F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
[CrossRef]

Rondi, D.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Rouskas, G. N.

G. N. Rouskas and M. H. Ammar, "Multi-destination communication over tunable-receiver single-hop WDM networks," IEEE J. Sel. Areas Commun. 15, 501-511 (1997).
[CrossRef]

Salvador, A. A.

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

Seassal, C.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Spisser, A.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Stanley, R. P.

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Sverdlo, B. N.

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

Teraguchi, N.

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

Tong, F. F.

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
[CrossRef]

Unlu, S.

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

Viktorovitch, P.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

Wang, Q.

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

Wang, X.

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
[CrossRef]

Wullert, J. R.

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

Zhou, Y.

Y. Zhou, J. Cheng, and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strain InGaAs quantum wells," IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Y. Hu, E. R. Hegblom, and L. A. Coldren, "Coupled-cavity resonant photodetectors for high-performance wavelength demultiplexing applications," Appl. Phys. Lett. 71, 178-180 (1997).
[CrossRef]

C. J. Chang-Hasnain, J. R. Wullert, J. P. Harbison, L. T. Florez, N. G. Stoffel, and M. W. Maeda, "Rastered, uniformly separated wavelengths emitted from a two-dimensional vertical-cavity surface-emitting laser array," Appl. Phys. Lett. 58, 31-33 (1991).
[CrossRef]

H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface," Appl. Phys. Lett. 88, 061104 (2006).
[CrossRef]

R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Llegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883-1885 (1994).
[CrossRef]

F. G. D. Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm," Appl. Phys. Lett. 77, 1614-1616 (2000).
[CrossRef]

Electron. Lett. (2)

H. Huang, Y. Huang, and X. Ren, "Ultra-narrow spectral linewidth photodetector based on taper cavity," Electron. Lett. 39, 113-115 (2003).
[CrossRef]

B. N. Sverdlo, A. E. Botchkarey, N. Teraguchi, A. A. Salvador, and H. H. Morkoc, "Reduction of dark current in photodiodes by the use of a resonant cavity," Electron. Lett. 29, 1019-1021 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

X. Ren and J. C. Campbell, "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer," IEEE J. Quantum Electron. 32, 1903-1915 (1996).
[CrossRef]

K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, "Resonant cavity-enhanced (RCE) photodetectors," IEEE J. Quantum Electron. 27, 2025-2034 (1991).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

G. N. Rouskas and M. H. Ammar, "Multi-destination communication over tunable-receiver single-hop WDM networks," IEEE J. Sel. Areas Commun. 15, 501-511 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Y. Zhou, J. Cheng, and A. A. Allerman, "High-speed wavelength-division multiplexing and demultiplexing using monolithic quasi-planar VCSEL and resonant photodetector arrays with strain InGaAs quantum wells," IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

H. Huang, Y. Huang, X. Wang, and X. Ren, "Long wavelength resonant cavity photodetectors based on InP/air gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
[CrossRef]

T. Knodl, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad, Jr., and K. J. Ebeling, "RCE photodetectors based on VCSEL structure," IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

D. G. Deppe, A. Kudari, D. L. Huffaker, H. Deng, Q. Deng, and J. C. Campbell, "Mode coupling in a narrow spectral bandwidth quantum-dot microcavity photodetector," IEEE Photon. Technol. Lett. 10, 252-254 (1998).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photon. Technol. Lett. 10, 1259-1261 (1998).
[CrossRef]

J. Lightwave Technol. (1)

B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," J. Lightwave Technol. 12, 1791-1801 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, "Selective wet etching of InGaAs/InGaAsP in HCl/HF/CrO3 solutions: application to vertical taper structures in integrated optoelectronic devices," J. Vac. Sci. Technol. B 23, 1650-1653 (2005).
[CrossRef]

Other (1)

X. Ren and J. C. Campbell, "A novel structure: one-mirror-inclined three-mirror-cavity high performance photodetectors," in Technical Proceedings: International Topic Meeting on Photoelectronics (Beijing Institute of Technology, 1997), pp. 81-84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic structure of the photodetector. AR, antireflection.

Fig. 2
Fig. 2

Schematic beam propagating in the taper cavity.

Fig. 3
Fig. 3

Calculated intensity profiles of the transmitted beam with different taper angles.

Fig. 4
Fig. 4

Calculated transmit spectra of the taper cavity with different taper angles.

Fig. 5
Fig. 5

Calculated reflectivity of the FPC as function of incident angle for TE and TM components.

Fig. 6
Fig. 6

Scanning electron microscopy micrograph of the etched taper structure.

Fig. 7
Fig. 7

Atomic Force Microscope image of the etched taper surface.

Fig. 8
Fig. 8

Measured spectral response of the structure photodetector.

Fig. 9
Fig. 9

Measured frequency response of the structure photodetector.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z ( n ) = m = 1 n [ L ( 2 m 2 ) + L ( 2 m 1 ) ] ,
X ( n ) = m = 1 n { L ( 2 m 2 ) sin [ ( 2 m 2 ) θ ] + L ( 2 m 1 ) sin ( 2 m θ ) } .
E ( x , z ) = W 0 w ( z , λ ) exp [ x 2 w ( z , λ ) 2 ] exp [ i k ( λ ) x 2 2 r ( z , λ ) ] × exp { i k ( λ ) z i arctan [ z z r ( λ ) ] } ,
output ( x , λ ) = ( 1 R 2 ) E ( x , z ) + n = 1 R 2 n ( 1 R 2 ) × E n [ x X ( n ) , z ] ,

Metrics