Abstract

A principal scheme for an external cavity technique for changing the polarization of a laser beam based on a modified Sagnac interferometer is proposed. The modified Sagnac interferometer includes standard optical components: a displacement polarizing beam splitter, an angle reflector, and a Dove prism. The radially polarized beams, obtained with the help of the developed scheme, allow the generation of a longitudinally polarized electric field by sharp focusing. The phase correction of radially polarized modes of higher orders leads to increasing the longitudinal field in the focus of the beam.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, 1988), p. 172.
  2. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
    [CrossRef]
  3. M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).
  4. A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D 33, 1817-1822 (2000).
    [CrossRef]
  5. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).
  6. C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004).
    [CrossRef] [PubMed]
  7. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
    [CrossRef] [PubMed]
  8. S. C. Tidwell, G. H. Kim, and W. D. Kimura, "Efficient radially polarized laser beam generation with a double interferometer," Appl. Opt. 32, 5222-5229 (1993).
    [CrossRef] [PubMed]
  9. A. V. Bezverbny, V. G. Niziev, and A. M. Tumaikin, "Dipole traps for neutral atoms formed by nonuniformly polarized laguerre modes," Quantum Electron. 34, 685-689 (2004).
    [CrossRef]
  10. T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).
  11. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
    [CrossRef]
  12. T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
    [CrossRef]
  13. S. Quabis, R. Dorn, and G. Leuchs. "Generation of radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
    [CrossRef]
  14. G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
    [CrossRef]
  15. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
    [CrossRef]
  16. E. G. Churin, J. Hoβfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993).
    [CrossRef]
  17. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
    [CrossRef]
  18. N. Passilly, R. Denis, K. Ait-Ameur, F. Treussart, R. Hiorle, and J. F. Roch, "Simple interferometric technique for generation of a radially polarized light beam," J. Opt. Soc. Am. A 22, 984-991 (2005).
    [CrossRef]
  19. P. T. Beyersdorf, M. M. Fejer, and K. L. Byer, "Polarization Sagnac interferometer with postmodulation for gravitational-wave detection," Opt. Lett. 24, 1112-1114 (1999).
    [CrossRef]
  20. J. Hwang, M. M. Fejer, and W. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802(R) (2006).
  21. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
    [PubMed]
  22. M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
    [CrossRef]
  23. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
    [CrossRef]
  24. A. V. Nesterov and V. G. Niziev, "Propagation features of beams with axially symmetric polarization," J. Opt. B: Quantum Semiclassical Opt. 3, 215-219 (2001).
    [CrossRef]
  25. S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction and Confinement of Optical Radiation (Academic Press, 1986).

2005 (3)

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

S. Quabis, R. Dorn, and G. Leuchs. "Generation of radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
[CrossRef]

N. Passilly, R. Denis, K. Ait-Ameur, F. Treussart, R. Hiorle, and J. F. Roch, "Simple interferometric technique for generation of a radially polarized light beam," J. Opt. Soc. Am. A 22, 984-991 (2005).
[CrossRef]

2004 (5)

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004).
[CrossRef] [PubMed]

A. V. Bezverbny, V. G. Niziev, and A. M. Tumaikin, "Dipole traps for neutral atoms formed by nonuniformly polarized laguerre modes," Quantum Electron. 34, 685-689 (2004).
[CrossRef]

2002 (3)

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
[CrossRef]

Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).
[PubMed]

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

2001 (1)

A. V. Nesterov and V. G. Niziev, "Propagation features of beams with axially symmetric polarization," J. Opt. B: Quantum Semiclassical Opt. 3, 215-219 (2001).
[CrossRef]

2000 (1)

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D 33, 1817-1822 (2000).
[CrossRef]

1999 (4)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

P. T. Beyersdorf, M. M. Fejer, and K. L. Byer, "Polarization Sagnac interferometer with postmodulation for gravitational-wave detection," Opt. Lett. 24, 1112-1114 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

1993 (2)

E. G. Churin, J. Hoβfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

S. C. Tidwell, G. H. Kim, and W. D. Kimura, "Efficient radially polarized laser beam generation with a double interferometer," Appl. Opt. 32, 5222-5229 (1993).
[CrossRef] [PubMed]

1990 (1)

Ahmed, M. A.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Ait-Ameur, K.

Arsenyan, T. I.

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

Beyersdorf, P. T.

Bezverbny, A. V.

A. V. Bezverbny, V. G. Niziev, and A. M. Tumaikin, "Dipole traps for neutral atoms formed by nonuniformly polarized laguerre modes," Quantum Electron. 34, 685-689 (2004).
[CrossRef]

Biener, G.

Bomzon, Z.

Byer, K. L.

Choudhury, A.

Churin, E. G.

E. G. Churin, J. Hoβfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Crosignani, B.

S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction and Confinement of Optical Radiation (Academic Press, 1986).

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Davidson, N.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Denis, R.

DiPorto, P.

S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction and Confinement of Optical Radiation (Academic Press, 1986).

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs. "Generation of radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).

Fedotov, N. N.

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

Fejer, M. M.

P. T. Beyersdorf, M. M. Fejer, and K. L. Byer, "Polarization Sagnac interferometer with postmodulation for gravitational-wave detection," Opt. Lett. 24, 1112-1114 (1999).
[CrossRef]

J. Hwang, M. M. Fejer, and W. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802(R) (2006).

Feurer, Th.

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

Ford, D. H.

Friesem, A. A.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Galushkin, M. G.

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

Glur, H.

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

Graf, Th.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Hiorle, R.

Hoßfeld, J.

E. G. Churin, J. Hoβfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Hwang, J.

J. Hwang, M. M. Fejer, and W. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802(R) (2006).

Kim, G. H.

Kimura, W. D.

Kleiner, V.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1988), p. 172.

Kornienko, L. S.

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

Korolenko, P. V.

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

Kulyagina, E. A.

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

Leger, J. R.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).

Leuchs., G.

S. Quabis, R. Dorn, and G. Leuchs. "Generation of radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
[CrossRef]

Makarov, V. G.

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

Meier, M.

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

Miyaji, G.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Moerner, W. E.

J. Hwang, M. M. Fejer, and W. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802(R) (2006).

Moser, T.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, "Propagation features of beams with axially symmetric polarization," J. Opt. B: Quantum Semiclassical Opt. 3, 215-219 (2001).
[CrossRef]

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D 33, 1817-1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Niziev, V. G.

A. V. Bezverbny, V. G. Niziev, and A. M. Tumaikin, "Dipole traps for neutral atoms formed by nonuniformly polarized laguerre modes," Quantum Electron. 34, 685-689 (2004).
[CrossRef]

A. V. Nesterov and V. G. Niziev, "Propagation features of beams with axially symmetric polarization," J. Opt. B: Quantum Semiclassical Opt. 3, 215-219 (2001).
[CrossRef]

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D 33, 1817-1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Ohbayashi, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Oron, R.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

Parriaux, O.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Passilly, N.

Petrova, G. V.

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

Pigeon, F.

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Polosko, A. T.

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs. "Generation of radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).

Roch, J. F.

Romano, V.

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

Sheppard, C. J. R.

Solimeno, S.

S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction and Confinement of Optical Radiation (Academic Press, 1986).

Sueda, K.

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Tidwell, S. C.

Treussart, F.

Tschudi, T.

E. G. Churin, J. Hoβfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

Tumaikin, A. M.

A. V. Bezverbny, V. G. Niziev, and A. M. Tumaikin, "Dipole traps for neutral atoms formed by nonuniformly polarized laguerre modes," Quantum Electron. 34, 685-689 (2004).
[CrossRef]

Wyss, E.

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Yakunin, V. P.

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Zhan, Q.

Appl. Opt. (3)

Appl. Phys. B (1)

S. Quabis, R. Dorn, and G. Leuchs. "Generation of radially polarized doughnut mode of high quality," Appl. Phys. B 81, 597-600 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, "Discontinuous phase elements for transverse mode selection in laser resonators," Appl. Phys. Lett. 74, 1373-1375 (1999).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

A. V. Nesterov and V. G. Niziev, "Propagation features of beams with axially symmetric polarization," J. Opt. B: Quantum Semiclassical Opt. 3, 215-219 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (3)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D 33, 1817-1822 (2000).
[CrossRef]

Laser Phys. Lett. (1)

T. Moser, M. A. Ahmed, F. Pigeon, O. Parriaux, E. Wyss, and Th. Graf, "Generation of radially polarized beams in Nd: YAG lasers with polarization selective mirrors," Laser Phys. Lett. 1, 234-236 (2004).
[CrossRef]

Opt. Commun. (1)

E. G. Churin, J. Hoβfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer generated holograms," Opt. Commun. 99, 13-17 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. of SPIE (1)

M. Meier, H. Glur, E. Wyss, Th. Feurer, and V. Romano, "Laser microhole drilling using Q-switched radially and tangentially polarized beams," in Proc. of SPIE 6053, 313-318 (2005).

Quantum Electron. (2)

A. V. Bezverbny, V. G. Niziev, and A. M. Tumaikin, "Dipole traps for neutral atoms formed by nonuniformly polarized laguerre modes," Quantum Electron. 34, 685-689 (2004).
[CrossRef]

M. G. Galushkin, P. V. Korolenko, V. G. Makarov, A. T. Polosko, and V. P. Yakunin, "Phase correction of radiation emitted by a powerful industrial laser with higher mode selection," Quantum Electron. 32, 547-552 (2002).
[CrossRef]

Rev. Laser Eng. (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, "Generation of vector beams with axially-symmetric polarization," Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Other (5)

J. Hwang, M. M. Fejer, and W. E. Moerner, "Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter," Phys. Rev. A 73, 021802(R) (2006).

T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, and G. V. Petrova, "Laser beam with helical wavefront dislocations and their applications in the diagnostical and metrological systems," in Fifth International Conference on Industrial Lasers and Laser Applications '95, V.Panchenko and V.Golubev, eds., Proc. SPIE 2713, 453-460 (1995).

R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003).

S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction and Confinement of Optical Radiation (Academic Press, 1986).

W. Koechner, Solid-State Laser Engineering (Springer, 1988), p. 172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic of a Sagnac interferometer. (a) Simplified schematic; P and S are the corresponding polarization of two beams. (b) Schematic with a Dove prism. (c) Modified Sagnac interferometer configuration to produce laser beams with inhomogeneous polarization.

Fig. 2
Fig. 2

(Color online) Graphical explanation concerning installation of half-wavelength phase shifters into experimental setup, where β = 10.25 ° , γ = 90 ° , and θ = 22.5 ° .

Fig. 3
Fig. 3

(Color online) Modernized Sagnac interferometer mounting on an optical table.

Fig. 4
Fig. 4

(Color online) Examples of inhomogeneously polarized resonator modes. (a) Radially polarized mode R - TEM 01* . (b) The angle between E and radius is 45 ° . (c) Azimuthally polarized mode A-TEM 01* . (d) The mode with different directions of electric field. (e) The mode with different types of polarization. (f) Helical mode with plane polarization.

Fig. 5
Fig. 5

(Color online) Radially polarized mode of higher order ( R-TEM 21* ) .

Fig. 6
Fig. 6

(Color online) Experimentally obtained pictures of the modes with axially symmetric polarization. (a) Intensity distribution in the cross section of the laser beam. (b) Diagnostics of the mode with inhomogeneous polarization indicated in Fig. 5(e). The intensity distribution is just after the polarizer–analyzer. The white line is the axis of the polarizer. (c) The diagnostics of the radially polarized beam indicated in Fig. 5(a). The white line is the axis of the polarizer. The mode pattern rotates with the rotation of a polarizer around the beam axis.

Fig. 7
Fig. 7

(Color online) Schematic of use of a Sagnac interferometer in a laser resonator as a rear mirror to generate inhomogeneously polarized modes.

Fig. 8
Fig. 8

(Color online) Phase correction of the high-order radially polarized mode.

Fig. 9
Fig. 9

(Color online) Calculated distributions of longitudinal components of electric field E z and azimuthally directed magnetic field H φ in the waist for the radially polarized modes of different orders.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E p , 1 z ( r , z ) = 1 r ( r H p , 1 φ ( r , z ) ) r ,
H p , 1 φ = 2 p ! π ( p + 1 ) ! 1 w ( 2 R ) L p 1 ( 2 R 2 ) exp ( R 2 ) exp ( i θ ) ,
θ = 2 arctan Z 2 Z z 0 2 w 0 2 Z R 2 ;
R = r / w , w 2 = w 0 2 ( 1 + Z 2 ) ;   Z = z / z 0 ;   z 0 = π w 0 2 λ ;
L p 1 ( x ) = m = 0 p ( 1 ) m ( p + 1 ) ! ( p m ) ! ( m + 1 ) ! m ! x m ,
E p 1 z ( r , z ) = 2 i   1 π p ! π ( p + 1 ) ! λ w 1 w { ( 1 R 2 i R 2 Z ) × L p 1 ( 2 R 2 ) + [ x d dx L p 1 ( x ) ] x = 2 R 2 } × exp ( R 2 ) exp ( i θ ) .
x d dx L p 1 ( x ) = [ p L p 1 ( x ) ( p + 1 ) L p 1 1 ( x ) ]
E p , 1 z ( r ) = 2 i   1 π p ! π ( p + 1 ) λ w 0 1 w 0 { ( 1 + p R 0 2 ) × L p 1 ( 2 R 0 2 ) [ ( p + 1 ) L p - 1 1 ( 2 R 0 2 ) ] } × exp ( R 0 2 ) ,

Metrics