Abstract

We present a method and technique of using hyperspectral diffuse reflectance for rapid determination of the optical properties of turbid media. A hyperspectral imaging system in line scanning mode was used to acquire spatial diffuse reflectance profiles from liquid phantoms made up of absorbing dyes and fat emulsion scatterers over the spectral range of 4501000nm instantaneously. The hyperspectral reflectance data were analyzed by using a steady-state diffusion approximation model for semi-infinite homogeneous media. A calibration procedure was developed to compensate the nonuniform instrument response of the imaging system, and a curve-fitting algorithm was used to extract absorption and reduced scattering coefficients (μa and μs, respectively) for the phantoms in the wavelength range from 530 to 900nm. The hyperspectral imaging system gave good measures of μa and μs for the phantoms with average fitting errors of 12% and 7%, respectively. The hyperspectral imaging technique is fast, noncontact, and easy to use, which makes it especially suitable for measurement of the optical properties of turbid liquid and solid foods.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  2. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991).
    [CrossRef] [PubMed]
  3. R. A. J. Groenhuis, J. J. Tenbosch, and H. A. Ferwerda, "Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration," Appl. Opt. 22, 2463-2467 (1983).
    [CrossRef] [PubMed]
  4. S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
    [CrossRef] [PubMed]
  5. V. Ntziachristos and B. Chance, "Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy," Med. Phys. 28, 1115-1124 (2001).
    [CrossRef] [PubMed]
  6. B. W. Pogue and M. S. Patterson, "Frequency-domain optical-absorption spectroscopy of finite tissue volumes using diffusion-theory," Phys. Med. Biol. 39, 1157-1180 (1994).
    [CrossRef] [PubMed]
  7. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997).
    [CrossRef] [PubMed]
  8. M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997).
    [CrossRef] [PubMed]
  9. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
    [CrossRef] [PubMed]
  10. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001).
    [CrossRef]
  11. L. H. Wang and S. L. Jacques, "Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium," Appl. Opt. 34, 2362-2366 (1995).
    [CrossRef] [PubMed]
  12. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).
    [CrossRef] [PubMed]
  13. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
    [CrossRef]
  14. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo," Med. Phys. 19, 879-888 (1992).
    [CrossRef] [PubMed]
  15. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  16. J. A. Raty and K. E. Peiponen, "Reflectance study of milk in the UV-visible range," Appl. Spectrosc. 53, 1123-1127 (1999).
    [CrossRef]
  17. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
    [CrossRef]
  18. C. L. Crofcheck, F. A. Payne, and M. P. Menguc, "Characterization of milk properties with a radiative transfer model," Appl. Opt. 41, 2028-2037 (2002).
    [CrossRef] [PubMed]
  19. D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
    [CrossRef]
  20. C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
    [CrossRef]
  21. R. Lu, "Imaging spectroscopy for assessing internal quality of apple fruit," in ASAE Annual International Meeting (American Society of Agricultural and Biological Engineers, 2003), paper 036012.
  22. R. Lu and Y. R. Chen, "Hyperspectral imaging for safety inspection of food and agricultural products," in Pathogen Detection and Remediation for Safe Eating, Y.-R. Chen, ed., Proc. SPIE 3544, 121-133 (1998).
  23. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  24. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Tenbosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983).
    [CrossRef] [PubMed]

2004 (1)

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

2003 (1)

D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
[CrossRef]

2002 (1)

2001 (3)

2000 (1)

1999 (2)

J. A. Raty and K. E. Peiponen, "Reflectance study of milk in the UV-visible range," Appl. Spectrosc. 53, 1123-1127 (1999).
[CrossRef]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

1998 (1)

R. Lu and Y. R. Chen, "Hyperspectral imaging for safety inspection of food and agricultural products," in Pathogen Detection and Remediation for Safe Eating, Y.-R. Chen, ed., Proc. SPIE 3544, 121-133 (1998).

1997 (3)

1996 (1)

1995 (2)

L. H. Wang and S. L. Jacques, "Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium," Appl. Opt. 34, 2362-2366 (1995).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1994 (1)

B. W. Pogue and M. S. Patterson, "Frequency-domain optical-absorption spectroscopy of finite tissue volumes using diffusion-theory," Phys. Med. Biol. 39, 1157-1180 (1994).
[CrossRef] [PubMed]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

1991 (2)

1989 (1)

1983 (2)

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Anderson, E. R.

Andersson-Engels, S.

Aruna, P.

Berndt, K. W.

Bevilacqua, F.

Brenner, M.

Chance, B.

V. Ntziachristos and B. Chance, "Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy," Med. Phys. 28, 1115-1124 (2001).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

Chen, Y. R.

R. Lu and Y. R. Chen, "Hyperspectral imaging for safety inspection of food and agricultural products," in Pathogen Detection and Remediation for Safe Eating, Y.-R. Chen, ed., Proc. SPIE 3544, 121-133 (1998).

Cope, M.

Coquoz, O.

Crofcheck, C. L.

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Dalgaard, T.

Dam, J. S.

D'Andrea, C.

Delpy, D. T.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Dover, C.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Fabricius, P. E.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Ferwerda, H. A.

Fishkin, J. B.

Foster, T. H.

Fraser, D. G.

D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
[CrossRef]

Groenhuis, R. A. J.

Hibst, R.

Hull, E. L.

Jacques, S. L.

L. H. Wang and S. L. Jacques, "Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium," Appl. Opt. 34, 2362-2366 (1995).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Johnson, D.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Jordan, R. B.

D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
[CrossRef]

Kienle, A.

Kunnemeyer, R.

D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
[CrossRef]

Lakowicz, J. R.

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Lilge, L.

Lu, R.

R. Lu and Y. R. Chen, "Hyperspectral imaging for safety inspection of food and agricultural products," in Pathogen Detection and Remediation for Safe Eating, Y.-R. Chen, ed., Proc. SPIE 3544, 121-133 (1998).

R. Lu, "Imaging spectroscopy for assessing internal quality of apple fruit," in ASAE Annual International Meeting (American Society of Agricultural and Biological Engineers, 2003), paper 036012.

Matcher, S. J.

McGlone, V. A.

D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
[CrossRef]

Menguc, M. P.

Moes, C. J. M.

Moulton, J. D.

Nichols, M. G.

Ntziachristos, V.

V. Ntziachristos and B. Chance, "Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy," Med. Phys. 28, 1115-1124 (2001).
[CrossRef] [PubMed]

Ortiz, C.

Patterson, M. S.

Payne, F. A.

Pedersen, C. B.

Peiponen, K. E.

Pham, T. H.

Pifferi, A.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, "Frequency-domain optical-absorption spectroscopy of finite tissue volumes using diffusion-theory," Phys. Med. Biol. 39, 1157-1180 (1994).
[CrossRef] [PubMed]

Prahl, S. A.

Raty, J. A.

Ruiz-Altisent, M.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Spott, T.

Steiner, R.

Sterenborg, H. J. C. M.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Taroni, P.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Tenbosch, J. J.

Torricelli, A.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Tromberg, B. J.

Valentini, G.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

Valero, C.

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover, and D. Johnson, "Time-resolved reflectance spectroscopy applied to the nondestructive monitoring of the internal optical properties in apples," Appl. Spectrosc. 55, 1368-1374 (2001).
[CrossRef]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

L. H. Wang and S. L. Jacques, "Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium," Appl. Opt. 34, 2362-2366 (1995).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (13)

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Tenbosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983).
[CrossRef] [PubMed]

R. A. J. Groenhuis, J. J. Tenbosch, and H. A. Ferwerda, "Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration," Appl. Opt. 22, 2463-2467 (1983).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997).
[CrossRef] [PubMed]

L. H. Wang and S. L. Jacques, "Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium," Appl. Opt. 34, 2362-2366 (1995).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
[CrossRef] [PubMed]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001).
[CrossRef]

C. L. Crofcheck, F. A. Payne, and M. P. Menguc, "Characterization of milk properties with a radiative transfer model," Appl. Opt. 41, 2028-2037 (2002).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, "Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue," Appl. Opt. 30, 4474-4476 (1991).
[CrossRef] [PubMed]

Appl. Spectrosc. (2)

Biosyst. Eng. (1)

C. Valero, M. Ruiz-Altisent, R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, D. Johnson, and C. Dover, "Selection models for the internal quality of fruit, based on time domain laser reflectance spectroscopy," Biosyst. Eng. 88, 313-323 (2004).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML--Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Med. Phys. (2)

V. Ntziachristos and B. Chance, "Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy," Med. Phys. 28, 1115-1124 (2001).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion-theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo," Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

B. W. Pogue and M. S. Patterson, "Frequency-domain optical-absorption spectroscopy of finite tissue volumes using diffusion-theory," Phys. Med. Biol. 39, 1157-1180 (1994).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Postharvest Biol. Technol. (1)

D. G. Fraser, R. B. Jordan, R. Kunnemeyer, and V. A. McGlone, "Light distribution inside mandarin fruit during internal quality assessment by NIR spectroscopy," Postharvest Biol. Technol. 27, 185-196 (2003).
[CrossRef]

Other (2)

R. Lu, "Imaging spectroscopy for assessing internal quality of apple fruit," in ASAE Annual International Meeting (American Society of Agricultural and Biological Engineers, 2003), paper 036012.

R. Lu and Y. R. Chen, "Hyperspectral imaging for safety inspection of food and agricultural products," in Pathogen Detection and Remediation for Safe Eating, Y.-R. Chen, ed., Proc. SPIE 3544, 121-133 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Hyperspectral imaging system used to acquire diffuse reflectance images from liquid phantoms.

Fig. 2
Fig. 2

(a) Hyperspectral reflectance image of a liquid phantom with μ a = 0.088 cm 1 and μ s = 6.858 cm 1 at 700 nm ; (b) spatial profiles extracted from 1 to 10 mm at 600, 700, 800, and 900 nm .

Fig. 3
Fig. 3

Sample-based calibrations at 650 nm : (a) Normalized spatial profiles of the Farrell model and experimental data of the reference sample with μ a = 0.182 cm 1 and μ s = 5.605 cm 1 at 650 nm . (b) System calibration curve at 650 nm obtained from the ratio between the normalized Farrell model and the normalized experimental data of the reference sample. (c) Calibrated result for a liquid phantom with μ a = 0.145 cm 1 and μ s = 5.405 cm 1 at 650 nm . (d) Calibrated result for a liquid phantom with μ a = 0.382 cm 1 and μ s = 8.008 cm 1 at 650 nm .

Fig. 4
Fig. 4

Typical results from fitting the normalized Farrell model (curves) to the calibrated spatially resolved reflectance data (points) of a liquid phantom at four wavelengths: (a) 600 nm ( μ a = 0.485 cm 1 and μ s = 8.026 cm 1 ) , (b) 700 nm ( μ a = 0.088 cm 1 and μ s = 6.858 cm 1 ) , (c) 800 nm ( μ a = 0.010 cm 1 and μ s = 5.934 cm 1 ) , (d) 900 nm ( μ a = 0.011 cm 1 and μ s = 5.196 cm 1 ) .

Fig. 5
Fig. 5

Curve-fitting results (points) for μ a and μ s for three liquid phantoms: (a), (b) sample with both low values of μ a and μ s , (c), (d) sample with high μ a and low μ s , and (e), (f) sample with both high μ a and μ s . Solid curves are the actual values of μ a and μ s determined from standard absorption measurements and Eqs. (1)–(3).

Tables (1)

Tables Icon

Table 1 Fitting Errors for μa and μs ′ at Different Levels of Optical Properties

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

μ s ( λ ) = 160 λ 2.4 ,
g ( λ ) = 1.1 0.58 λ ,
μ s ( λ ) = 10 μ s ( 1 g ) C % ,
R f ( r ) = a 4 π [ 1 μ t ( μ eff + 1 r 1 ) exp ( - μ eff r 1 ) r 1 2 + ( 1 μ t + 4 A 3 μ t ) × ( μ eff + 1 r 2 ) exp ( - μ eff r 2 ) r 2 2 ] ,
r 1 = [ ( 1 μ t ) 2 + r 2 ] 1 / 2 ,
r 2 = [ ( 1 μ t + 4 A 3 μ t ) 2 + r 2 ] 1 / 2 ,
R ¯ e ( r ) = R e ( r ) R e ( r norm ) ,
R ¯ f ( r ) = R f ( r ) R f ( r norm ) ,
S ( r ) = R ¯ f _ ref ( r ) R ¯ e _ ref ( r ) ,
R ¯ e _ cal ( r ) = R ¯ e ( r ) * S ( r ) ,

Metrics