Abstract

With pumping by a Ti:sapphire laser, the cw laser characteristic of a 5.6at. %, 0.5mmthick Nd3+:LaB3O6 cleavage microchip in an end-pumped plano–plano resonator is researched. A slope efficiency of up to 49% and a maximum output power of 530mW are obtained at an absorbed pump power of 1.16W and an optimal output coupler transmission of 3.2%. Choppers with different duty cycles are used to change the thermal effects in the microchip, and the influences of thermal effects on the laser characteristics of the Nd3+:LaB3O6 cleavage microchip are investigated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989).
    [CrossRef] [PubMed]
  2. J. J. Zayhowski and A. Mooradian, "Frequency tuning of microchip laser using pump-power modulation," IEEE J. Quantum Electron. 28, 1118-1122 (1992).
    [CrossRef]
  3. J. J. Zayhowski and C. Dill III, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
    [CrossRef] [PubMed]
  4. D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
    [CrossRef]
  5. G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).
  6. Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
    [CrossRef]
  7. E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
    [CrossRef]
  8. A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
    [CrossRef]
  9. F. Varsanyi, "Surface lasers," Appl. Phys. Lett. 19, 169-171 (1971).
    [CrossRef]
  10. A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers" Quantum Electron. 24, 1029-1030 (1994).
    [CrossRef]
  11. Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
    [CrossRef]
  12. Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).
  13. Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
    [CrossRef]
  14. R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999).
    [CrossRef]
  15. T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
    [CrossRef]
  16. D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
    [CrossRef]
  17. W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J. Phys. 34, 2381-2395 (2001).
  18. Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
    [CrossRef]
  19. A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
    [CrossRef]
  20. E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
    [CrossRef]
  21. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).
  22. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1981).
  23. V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
    [CrossRef]
  24. Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
    [CrossRef]
  25. Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).
  26. L. Deshazer, "Vanadate crystals exploit diode-pump technology," Laser Focus World 30, 88-93 (1994).
  27. W. Koechner, "Output fluctuations of CW-pumped Nd:YAG lasers," IEEE J. Quantum Electron. 8, 656-661 (1972).
    [CrossRef]
  28. D. Findlay and R. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 227-228 (1966).
  29. E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961).
    [CrossRef]
  30. F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
    [CrossRef]
  31. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).
  32. W. R. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988).
    [CrossRef]
  33. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
    [CrossRef]
  34. N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
    [CrossRef]
  35. P. Laporta and M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991).
    [CrossRef]
  36. Y. F. Chen, "Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers," J. Opt. Soc. Am. B 17, 1835-1840 (2000).
    [CrossRef]
  37. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
    [CrossRef]

2006 (1)

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

2005 (3)

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

2004 (3)

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

2003 (1)

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

2002 (3)

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

2001 (3)

W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J. Phys. 34, 2381-2395 (2001).

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

2000 (2)

Y. F. Chen, "Pump-to-mode size ratio dependence of thermal loading in diode-end-pumped solid-state lasers," J. Opt. Soc. Am. B 17, 1835-1840 (2000).
[CrossRef]

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
[CrossRef]

1999 (2)

R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999).
[CrossRef]

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
[CrossRef]

1996 (1)

D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
[CrossRef]

1994 (3)

A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers" Quantum Electron. 24, 1029-1030 (1994).
[CrossRef]

J. J. Zayhowski and C. Dill III, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994).
[CrossRef] [PubMed]

L. Deshazer, "Vanadate crystals exploit diode-pump technology," Laser Focus World 30, 88-93 (1994).

1993 (1)

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

1992 (2)

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

J. J. Zayhowski and A. Mooradian, "Frequency tuning of microchip laser using pump-power modulation," IEEE J. Quantum Electron. 28, 1118-1122 (1992).
[CrossRef]

1991 (2)

P. Laporta and M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991).
[CrossRef]

Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

1989 (1)

1988 (2)

W. R. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5, 1412-1423 (1988).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

1972 (1)

W. Koechner, "Output fluctuations of CW-pumped Nd:YAG lasers," IEEE J. Quantum Electron. 8, 656-661 (1972).
[CrossRef]

1971 (1)

F. Varsanyi, "Surface lasers," Appl. Phys. Lett. 19, 169-171 (1971).
[CrossRef]

1966 (1)

D. Findlay and R. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 227-228 (1966).

1961 (1)

E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961).
[CrossRef]

Aguilo, M.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Aznar, A.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers" Quantum Electron. 24, 1029-1030 (1994).
[CrossRef]

Baumer, V. N.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Benayas, A.

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

Boon, J. R.

D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
[CrossRef]

Bovero, E.

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

Brussard, M.

P. Laporta and M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
[CrossRef]

Chartier, I.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Chen, Y. F.

Chen, Y. J.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Clarkson, W. A.

W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J. Phys. 34, 2381-2395 (2001).

Clay, R.

D. Findlay and R. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 227-228 (1966).

Conroy, R. S.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
[CrossRef]

D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
[CrossRef]

Czeranowsky, C.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

Deshazer, L.

L. Deshazer, "Vanadate crystals exploit diode-pump technology," Laser Focus World 30, 88-93 (1994).

Diaz, F.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Dill, C.

Ding, X.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Dolzhenkova, E. F.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Dubovik, M. F.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Fan, T. Y.

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Findlay, D.

D. Findlay and R. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 227-228 (1966).

Friel, G. J.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
[CrossRef]

Garapon, C.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

Gong, X. H.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

Graf, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Griebner, U.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Grinyov, B. V.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Grunwald, R.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Harder, C.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Heumann, E.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

Huang, Y. C.

Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).

Huang, Y. D.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Huber, G.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Jaque, D.

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
[CrossRef]

Jiang, A. D.

Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).

Kaminskii, A. A.

A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers" Quantum Electron. 24, 1029-1030 (1994).
[CrossRef]

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1981).

Keller, U.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Kemp, A. J.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
[CrossRef]

Koechner, W.

W. Koechner, "Output fluctuations of CW-pumped Nd:YAG lasers," IEEE J. Quantum Electron. 8, 656-661 (1972).
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Kullberg, M. P.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Kutovoi, S.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

Laporta, P.

P. Laporta and M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991).
[CrossRef]

Leigh, M.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Levin, E. M.

E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961).
[CrossRef]

Lin, X. Q.

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Lin, Y. F.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

Luo, Z. D.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).

Lupei, V.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

Matthews, D. G.

D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
[CrossRef]

Mermilliod, N.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

Mix, E.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Moncorge, R.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

Montes, M.

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

Mooradian, A.

J. J. Zayhowski and A. Mooradian, "Frequency tuning of microchip laser using pump-power modulation," IEEE J. Quantum Electron. 28, 1118-1122 (1992).
[CrossRef]

J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989).
[CrossRef] [PubMed]

Moser, M.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Neuenschwander, B.

R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999).
[CrossRef]

Paschotta, R.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Pavel, N.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Petrov, V.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Peyghambarian, N.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Qiu, M. W.

Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Rams, J.

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
[CrossRef]

Risk, W. R.

Robbins, C. R.

E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961).
[CrossRef]

Romero, R.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

Sato, Y.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

Schmidt, M.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

Shekhovtsov, A. N.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Sinclair, B. D.

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
[CrossRef]

D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
[CrossRef]

Sole, J. Garcia

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
[CrossRef]

Sole, R.

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

Song, F.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Spuhler, G. J.

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

Taira, T.

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

Tan, Q. G.

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

Tarasov, V. A.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Tolmachev, A. V.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Varsanyi, F.

F. Varsanyi, "Surface lasers," Appl. Phys. Lett. 19, 169-171 (1971).
[CrossRef]

Waring, J. L.

E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999).
[CrossRef]

Xu, J.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Zavartsev, Y.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

Zayhowski, J. J.

Zelenskaya, O. V.

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

Zhang, C.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Zhang, G.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

Appl. Phys. B (2)

G. J. Spuhler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285-287 (2001).

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Laser performances of Nd:LaB3O6 cleavage microchip passively Q switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 83, 195-201 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

Y. J. Chen, Y. D. Huang, X. Q. Lin, Q. G. Tan, Z. D. Luo, and Y. F. Lin, "Laser emission from unprocessed cleavage microchip," Appl. Phys. Lett. 86, 021115 (2005).
[CrossRef]

Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004).
[CrossRef]

E. Bovero, Z. D. Luo, Y. D. Huang, A. Benayas, and D. Jaque, "Single longitudinal mode laser oscillation from a neodymium aluminium borate stoichiometric crystal," Appl. Phys. Lett. 87, 211108 (2005).
[CrossRef]

A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, and V. Petrov, "Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2/KY(WO4)2 composites with monoclinic structure," Appl. Phys. Lett. 85, 4313-4315 (2004).
[CrossRef]

F. Varsanyi, "Surface lasers," Appl. Phys. Lett. 19, 169-171 (1971).
[CrossRef]

Y. Sato, T. Taira, N. Pavel, and V. Lupei, "Laser operation with near quantum-defect slope efficiency in Nd:YVO4 under direct pumping into the emitting level," Appl. Phys. Lett. 82, 844-846 (2003).
[CrossRef]

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, "Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers," Appl. Phys. Lett. 81, 2145-2147 (2002).
[CrossRef]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831-1833 (1990).
[CrossRef]

Chem. Phys. Lett. (1)

Y. J. Chen, X. Q. Lin, Z. D. Luo, and Y. D. Huang, "Polarized spectral analysis of Nd3+ ions in LaB3O6 biaxial crystal," Chem. Phys. Lett. 397, 282-287 (2004).
[CrossRef]

IEEE J. Quantum Electron. (8)

A. J. Kemp, R. S. Conroy, G. J. Friel, and B. D. Sinclair, "Guiding effects in Nd:YVO4 microchip lasers operating well above threshold," IEEE J. Quantum Electron. 35, 675-681 (1999).
[CrossRef]

J. J. Zayhowski and A. Mooradian, "Frequency tuning of microchip laser using pump-power modulation," IEEE J. Quantum Electron. 28, 1118-1122 (1992).
[CrossRef]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, "Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE J. Quantum Electron. 24, 1077-1099 (1988).
[CrossRef]

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening," IEEE J. Quantum Electron. 28, 1179-1187 (1992).
[CrossRef]

P. Laporta and M. Brussard, "Design criteria for mode size optimization in diode-pumped solid-state lasers," IEEE J. Quantum Electron. 27, 2319-2326 (1991).
[CrossRef]

T. Y. Fan, "Heat generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
[CrossRef]

V. Lupei, N. Pavel, and T. Taira, "Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level," IEEE J. Quantum Electron. 38, 240-245 (2002).
[CrossRef]

W. Koechner, "Output fluctuations of CW-pumped Nd:YAG lasers," IEEE J. Quantum Electron. 8, 656-661 (1972).
[CrossRef]

J. Am. Ceram. Soc. (1)

E. M. Levin, C. R. Robbins, and J. L. Waring, "Immiscibility and the system lanthanum oxide-boric oxide," J. Am. Ceram. Soc. 44, 87-91 (1961).
[CrossRef]

J. Appl. Phys. (2)

D. Jaque, J. Capmany, J. Rams, and J. Garcia Sole, "Effect of pump heating on laser and spectroscopic properties of the Nd:[YAl3(BO3)4] self-frequency-doubling laser," J. Appl. Phys. 87, 1042-1048 (2000).
[CrossRef]

Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, Q. G. Tan, and Y. D. Huang, "Highly efficient Nd3+:LaB3O6 cleavage microchip laser," J. Appl. Phys. 98, 103104 (2005).

J. Cryst. Growth (1)

E. F. Dolzhenkova, A. N. Shekhovtsov, A. V. Tolmachev, M. F. Dubovik, B. V. Grinyov, V. A. Tarasov, V. N. Baumer, and O. V. Zelenskaya, "Specific morphological features of LaB3O6 single crystals: a new promising material for thin-layer radiation detectors," J. Cryst. Growth 233, 473-476 (2001).
[CrossRef]

J. Mod Opt. (1)

D. G. Matthews, J. R. Boon, R. S. Conroy, and B. D. Sinclair, "A comparative study of diode pumped microchip laser materials: Nd-doped YVO4, YOS, SFAP, and SVAP," J. Mod Opt. 43, 1079-1087 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (1)

W. A. Clarkson, "Thermal effects and their mitigation in end-pumped solid-state lasers," J. Phys. 34, 2381-2395 (2001).

Laser Focus World (1)

L. Deshazer, "Vanadate crystals exploit diode-pump technology," Laser Focus World 30, 88-93 (1994).

Opt. Commun. (1)

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, "Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm," Opt. Commun. 205, 361-365 (2002).

Opt. Lett. (2)

Opt. Mater. (1)

R. Weber, B. Neuenschwander, and H. P. Weber, "Thermal effects in solid-state laser materials," Opt. Mater. 11, 245-254 (1999).
[CrossRef]

Phys. Lett. (1)

D. Findlay and R. Clay, "The measurement of internal losses in 4-level lasers," Phys. Lett. 20, 227-228 (1966).

Quantum Electron. (1)

A. A. Kaminskii and S. N. Bagaev, "Ribbon and sheet miniature crystal lasers" Quantum Electron. 24, 1029-1030 (1994).
[CrossRef]

Sci. China (1)

Z. D. Luo, A. D. Jiang, Y. C. Huang, and M. W. Qiu, "Studies on the self-activated laser crystal: neodymium aluminium borate NdA3(BO3)4," Sci. China , Ser. A: Math., Phys., Astron. 34, 762-768 (1991).

Other (2)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlag, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Room-temperature polarized absorption spectra of 5.6 at.  % Nd 3 + : LaBO cleavage microchip in a range from 770 to 890 nm .

Fig. 2
Fig. 2

Room-temperature polarized emission spectra of 5.6 at.  % Nd 3 + : LaBO cleavage microchip in a range from 1020 to 1120 nm . The inset shows the room-temperature fluorescence decay curve in semilogarithmic scale at 1060 nm of the Nd 3 + : LaBO crystal under excitation at 871 nm .

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Dependence of cw infrared laser output power on absorbed pump power for different transmissions of output coupler.

Fig. 5
Fig. 5

Dependence of quasi-cw infrared laser output power on absorbed pump power for different output coupler transmissions T at a 5% duty cycle chopper.

Fig. 6
Fig. 6

Ratios of the output power P of the fundamental laser between E b and E b polarizations versus the duty cycle for different output mirror transmissions when the absorbed pump power is 1.16 W .

Tables (1)

Tables Icon

Table 1 Comparison of the Spectroscopic Parameters of Nd3+:LaB3O6 Cleavage Microchip and Nd3+:YAG and Nd3+:YVO4 Crystals

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = v l v p T L + T d S d F ,
d v d T = v ( 1 n d n d T + 1 L d l d T ) .

Metrics