Abstract

We utilize a modified interferometric exposure model, enhanced with the Beer–Lambert law, to study how some process parameters influence the structural dimensions within the whole exposure area. An experimental apparatus is built to verify the accuracy of this model. The simulation results indicate that when the incident angle is larger than 15°, the effect of the beam deformation cannot be neglected. One cannot readily obtain periodic structures with the same dimensions during static exposure because of the Gaussian distribution of the light intensity. The theoretical results match the experimental ones quite well. The variation of Dill's parameter A has a greater influence on the transmittance and the linewidth when A is decreasing. If a poor contrast fringe is exposed in the photoresist, it will not only cause a greater nonuniformity of the structural dimensions but also a decreased aspect ratio in the structure after the development process.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
    [CrossRef]
  2. X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography," J. Vac. Sci. Technol. B 16, 3392-3397 (1998).
    [CrossRef]
  3. X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: approaching the resolution limits of optics," Opt. Lett. 24, 124-126 (1999).
    [CrossRef]
  4. M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
    [CrossRef]
  5. M. Switkes, T. M. Bloomstein, and M. Rothschild, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography," Appl. Phys. Lett. 77, 3149-3151 (2000).
    [CrossRef]
  6. H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
    [CrossRef]
  7. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
    [CrossRef]
  8. T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
    [CrossRef]
  9. J. Ferrera, M. L. Schattenburg, and H. I. Smith, "Analysis of distortion in interferometric lithography," J. Vac. Sci. Technol. B 14, 4009-4013 (1996).
    [CrossRef]
  10. P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
    [CrossRef]
  11. C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
    [CrossRef]
  12. A. Fernandez and D. W. Phillion, "Effects of phase shifts on four-beam interference patterns," Appl. Opt. 37, 473-478 (1998).
    [CrossRef]
  13. I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
    [CrossRef]
  14. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
    [CrossRef]
  15. E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).
  16. S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
    [CrossRef]
  17. F. H. Dill and J. M. Shaw, "Thermal effects on the photoresist AZ1350," IBM J. Res. Dev. 21, 210-218 (1977).
    [CrossRef]
  18. T. A. Carroll, B. W. Johnson, and W. F. Ramirez, "A model for the thermal degeneration of a positive optical photoresist," IEEE Trans. Electron Devices 39, 777-781 (1992).
    [CrossRef]
  19. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
    [CrossRef]

2005

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

2002

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

2001

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

2000

P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
[CrossRef]

M. Switkes, T. M. Bloomstein, and M. Rothschild, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography," Appl. Phys. Lett. 77, 3149-3151 (2000).
[CrossRef]

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

1999

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: approaching the resolution limits of optics," Opt. Lett. 24, 124-126 (1999).
[CrossRef]

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

1998

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography," J. Vac. Sci. Technol. B 16, 3392-3397 (1998).
[CrossRef]

A. Fernandez and D. W. Phillion, "Effects of phase shifts on four-beam interference patterns," Appl. Opt. 37, 473-478 (1998).
[CrossRef]

1996

J. Ferrera, M. L. Schattenburg, and H. I. Smith, "Analysis of distortion in interferometric lithography," J. Vac. Sci. Technol. B 14, 4009-4013 (1996).
[CrossRef]

1995

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

1993

S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
[CrossRef]

1992

T. A. Carroll, B. W. Johnson, and W. F. Ramirez, "A model for the thermal degeneration of a positive optical photoresist," IEEE Trans. Electron Devices 39, 777-781 (1992).
[CrossRef]

1977

F. H. Dill and J. M. Shaw, "Thermal effects on the photoresist AZ1350," IBM J. Res. Dev. 21, 210-218 (1977).
[CrossRef]

1975

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
[CrossRef]

Bak, H. J.

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

Bloomstein, T. M.

M. Switkes, T. M. Bloomstein, and M. Rothschild, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography," Appl. Phys. Lett. 77, 3149-3151 (2000).
[CrossRef]

Brueck, S. R. J.

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: approaching the resolution limits of optics," Opt. Lett. 24, 124-126 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography," J. Vac. Sci. Technol. B 16, 3392-3397 (1998).
[CrossRef]

S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
[CrossRef]

Carroll, T. A.

T. A. Carroll, B. W. Johnson, and W. F. Ramirez, "A model for the thermal degeneration of a positive optical photoresist," IEEE Trans. Electron Devices 39, 777-781 (1992).
[CrossRef]

Carter, J. M.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Chen, C.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

Chen, C. G.

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
[CrossRef]

Chen, X.

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: approaching the resolution limits of optics," Opt. Lett. 24, 124-126 (1999).
[CrossRef]

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography," J. Vac. Sci. Technol. B 16, 3392-3397 (1998).
[CrossRef]

Cui, Z.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

David, C.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

Dill, F. H.

F. H. Dill and J. M. Shaw, "Thermal effects on the photoresist AZ1350," IBM J. Res. Dev. 21, 210-218 (1977).
[CrossRef]

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
[CrossRef]

Du, C.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Du, J.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Duan, X.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Everett, P. N.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

Fernandez, A.

Ferrera, J.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

J. Ferrera, M. L. Schattenburg, and H. I. Smith, "Analysis of distortion in interferometric lithography," J. Vac. Sci. Technol. B 14, 4009-4013 (1996).
[CrossRef]

Gasson, S. S.

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

Grigaliunas, V.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Guo, Y.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Hauge, P. S.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
[CrossRef]

He, D.

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Heilmann, R. K.

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
[CrossRef]

Hinsberg, W. D.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Hoffnagle, J. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Hornberger, W. P.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
[CrossRef]

Houle, F. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Johnson, B. W.

T. A. Carroll, B. W. Johnson, and W. F. Ramirez, "A model for the thermal degeneration of a positive optical photoresist," IEEE Trans. Electron Devices 39, 777-781 (1992).
[CrossRef]

Kim, S. K.

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

Konkola, P.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

Konkola, P. T.

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
[CrossRef]

Kopustinskas, V.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Li, W.

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Liu, S.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Luo, B.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Meskinis, S.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Mickervicius, J.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Mikulskas, I.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Nealey, P.

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Oh, H. K.

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

Pati, G. S.

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

Phillion, D. W.

Ramirez, W. F.

T. A. Carroll, B. W. Johnson, and W. F. Ramirez, "A model for the thermal degeneration of a positive optical photoresist," IEEE Trans. Electron Devices 39, 777-781 (1992).
[CrossRef]

Rothschild, M.

M. Switkes, T. M. Bloomstein, and M. Rothschild, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography," Appl. Phys. Lett. 77, 3149-3151 (2000).
[CrossRef]

Sanchez, M.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Savas, T. A.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

Schattenburg, M. L.

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
[CrossRef]

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

J. Ferrera, M. L. Schattenburg, and H. I. Smith, "Analysis of distortion in interferometric lithography," J. Vac. Sci. Technol. B 14, 4009-4013 (1996).
[CrossRef]

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

Seo, E. J.

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

Shah, S. N.

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

Shaw, J. M.

F. H. Dill and J. M. Shaw, "Thermal effects on the photoresist AZ1350," IBM J. Res. Dev. 21, 210-218 (1977).
[CrossRef]

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
[CrossRef]

Smith, H. I.

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

J. Ferrera, M. L. Schattenburg, and H. I. Smith, "Analysis of distortion in interferometric lithography," J. Vac. Sci. Technol. B 14, 4009-4013 (1996).
[CrossRef]

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

Sohn, B. H.

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Sohn, Y. S.

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

Solak, H. H.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Switkes, M.

M. Switkes, T. M. Bloomstein, and M. Rothschild, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography," Appl. Phys. Lett. 77, 3149-3151 (2000).
[CrossRef]

Tang, X.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Tomasiunas, R.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Vaitkus, J.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

Wang, L.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

Yang, X. M.

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Yao, J.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Zaidi, S. H.

S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Switkes, T. M. Bloomstein, and M. Rothschild, "Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography," Appl. Phys. Lett. 77, 3149-3151 (2000).
[CrossRef]

H. H. Solak, D. He, W. Li, S. S. Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Appl. Phys. Lett. 75, 2328-2330 (2000).
[CrossRef]

Appl. Surf. Sci.

I. Mikulskas, J. Mickervicius, J. Vaitkus, R. Tomasiunas, V. Grigaliunas, V. Kopustinskas, and S. Meskinis, "Fabrication of photonic structures by means of interference lithography and reactive ion etching," Appl. Surf. Sci. 186, 599-603 (2002).
[CrossRef]

IBM J. Res. Dev.

F. H. Dill and J. M. Shaw, "Thermal effects on the photoresist AZ1350," IBM J. Res. Dev. 21, 210-218 (1977).
[CrossRef]

IEEE Trans. Electron Devices

T. A. Carroll, B. W. Johnson, and W. F. Ramirez, "A model for the thermal degeneration of a positive optical photoresist," IEEE Trans. Electron Devices 39, 777-781 (1992).
[CrossRef]

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, "Characterization of positive photoresist," IEEE Trans. Electron Devices ED-22, 445-452 (1975).
[CrossRef]

J. Korean Phys. Soc.

E. J. Seo, H. J. Bak, S. K. Kim, Y. S. Sohn, and H. K. Oh, "Modification of the development parameter for a chemically amplified resist simulator," J. Korean Phys. Soc. 40, 725-728 (2002).

J. Vac. Sci. Technol. B

M. L. Schattenburg, C. Chen, P. N. Everett, J. Ferrera, P. Konkola, and H. I. Smith, "Sub-100 nm metrology using interferometrically produced fiducials," J. Vac. Sci. Technol. B 17, 2692-2697 (1999).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, "Multiple-beam interference lithography with electron beam written gratings," J. Vac. Sci. Technol. B 20, 2844-2848 (2002).
[CrossRef]

S. H. Zaidi and S. R. J. Brueck, "Multiple-exposure interferometric lithography," J. Vac. Sci. Technol. B 11, 658-666 (1993).
[CrossRef]

X. Chen and S. R. J. Brueck, "Imaging interferometric lithography: a wavelength division multiplex approach to extending optical lithography," J. Vac. Sci. Technol. B 16, 3392-3397 (1998).
[CrossRef]

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography," J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, and H. I. Smith, "Achromatic interferometric lithography for 100-nm-period gratings and grids," J. Vac. Sci. Technol. B 13, 2732-2735 (1995).
[CrossRef]

J. Ferrera, M. L. Schattenburg, and H. I. Smith, "Analysis of distortion in interferometric lithography," J. Vac. Sci. Technol. B 14, 4009-4013 (1996).
[CrossRef]

P. T. Konkola, C. G. Chen, R. K. Heilmann, and M. L. Schattenburg, "Beam steering system and spatial filtering applied to interference lithography," J. Vac. Sci. Technol. B 18, 3282-3286 (2000).
[CrossRef]

C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," J. Vac. Sci. Technol. B 19, 2335-2341 (2001).
[CrossRef]

Microelectron. Eng.

S. Liu, J. Du, X. Duan, B. Luo, X. Tang, Y. Guo, Z. Cui, C. Du, and J. Yao, "Enhanced dill exposure model for thick photoresist lithography," Microelectron. Eng. 78-79, 490-495 (2005).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(Color online) Schematic of the modeling information at the air–photoresist interface and the simplified interference intensity distribution for V = 1 from the cross section of the xz plane with analysis points 1 to 5.

Fig. 2
Fig. 2

Schematic of the experimental interferometric lithographic system.

Fig. 3
Fig. 3

Pixel count of the laser beam with the fitting curve.

Fig. 4
Fig. 4

Simulated intensity distributions with and without considering beam deformation at incident angles of (a) 15°, (b) 30°, (c) 45°, (d) 60°.

Fig. 5
Fig. 5

(Color online) Fraction of the intensity variation at different positions with incident angles from 15° to 60°.

Fig. 6
Fig. 6

(Color online) (a) Intensity distribution at position 1 with V = 1 ; (b) the relative concentration of PAC (M) at position 1 with a 60 s exposure time.

Fig. 7
Fig. 7

(Color online) Structure dimension at z = 1.5 μ m with different exposure times at θ i = 30 ° , I 01 = I 02 , and equal to 1.365 and 2.8 mW / cm 2 , respectively, at position 1.

Fig. 8
Fig. 8

(Color online) Simulated transmittance curves of the photoresist with 1.5 μ m thickness using a 1.365 mW / cm 2 exposure intensity of the Gaussian beam.

Fig. 9
Fig. 9

(Color online) Solid symbols show the simulation results for the structure dimension at z = 1.5 μ m at each position with different exposure times at θ i = 30 ° , and the open symbols show the experimental results for the structure dimension.

Fig. 10
Fig. 10

SEM images for the structure dimensions with an 85 s exposure time at θ i = 30 ° . The structure's dimension is approximately (a) 192   nm around position 1, (b) 211   nm around position 2, (c) 284   nm around position 3, and (d) 357   nm outward from position 3.

Fig. 11
Fig. 11

Simulated transmittance curves for a 1.5 μ m photoresist thickness with a ± 10 % variation of parameter A at position 1.

Fig. 12
Fig. 12

(Color online) Structure dimension at z = 1.5 μ m at position 1 with different exposure times and alterations of parameter A.

Fig. 13
Fig. 13

(Color online) Light intensity profiles on the surface of the photoresist at each position with three different visibilities.

Fig. 14
Fig. 14

(Color online) Intensity distribution on the surface of the photoresist with different visibilities at position 1.

Fig. 15
Fig. 15

(Color online) AFM image of the periodical structure with a period at 820   nm ; the linewidth and height of the structure are 400 and 80   nm .

Fig. 16
Fig. 16

(Color online) Structure dimension at z = 1.5 μ m with different visibilities at each position.

Tables (1)

Tables Icon

Table 1 Dill's Parameters and Exposure Conditions for Shipley S1813

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

d I d z = I α i m i ,
I ( z , t ) z = I ( z , t ) [ α PAC m PAC ( z , t ) + α BR m BR ( z , t ) + α RP m RP ( z , t ) + α S m S ( z , t ) ] ,
m PAC ( z , t ) t = m PAC ( z , t ) I ( z , t ) C ,
I ( z , t ) z = I ( z , t ) [ A M ( z , t ) + B ] ,
M ( z , t ) t = I ( z , t ) M ( z , t ) C ,
A = ( α PAC α RP ) m PAC0 ,
B = α BR m BR0 + α RP m PAC0 + α S m S 0 ,
M ( z , t ) = m PAC ( z , t ) m PAC0 .
E ( x , y , z ) = E 0   exp ( r 2 w 0 2 ) exp ( j k · r k ) ,
r = x 2 + y 2 ,
E t s 1 = t E 0 t s 1   exp ( r 2 w 0 2 ) exp ( j k t s 1 · r t s 1 ) e ^ t s 1 ,
E t s 2 = t E 0 t s 2   exp ( r 2 w 0 2 ) exp ( j k t s 2 · r t s 2 ) e ^ t s 2 ,
t = 2 n i cos   θ i n i cos   θ i + n t cos   θ t ,
k t s 1 · r t s 1 = 2 π λ / n t ( x   sin   θ t + z   cos   θ t ) ,
k t s 1 · r t s 1 = 2 π λ / n t ( x   sin   θ t + z   cos   θ t ) ,
I t s = ( I 0 t s 1 + I 0 t s 2 ) [ 1 + V   cos ( 2 π p x ) ] × exp [ 2 ( x 2 w 0 x 2 sec 2 θ i + y 2 w 0 y 2 ) ] ,
I 0 t s 1 = ( n t n i ) t 2 I 0 i 1   cos   θ i ,
I 0 t s 2 = ( n t n i ) t 2 I 0 i 2   cos   θ i .
V = 2 I 0 t s 1 I 0 t s 2 ( e ^ t s 1 · e ^ t s 2 ) I 0 t s 1 + I 0 t s 2 | γ 12 | ,
P = λ 2   sin   θ i .
F = I circle I ellipsoid I ellipsoid ,
D = E 1 e ( t / F 1 ) + E 2 e ( t / F 2 ) + E 3 e ( t / F 3 ) + D 0 ,
T ( t ) = exp { o d [ A M ( z , t ) + B ] d z } ,

Metrics