Abstract

A new model for analyzing the laser-induced damage process is provided. In many damage pits, the melted residue can been found. This is evidence of the phase change of materials. Therefore the phase change of materials is incorporated into the mechanical damage mechanism of films. Three sequential stages are discussed: no phase change, liquid phase change, and gas phase change. To study the damage mechanism and process, two kinds of stress have been considered: thermal stress and deformation stress. The former is caused by the temperature gradient and the latter is caused by high-pressure drive deformation. The theory described can determine the size of the damage pit.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
    [CrossRef] [PubMed]
  2. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
    [CrossRef]
  3. R. W. Hopper and D. R. Uhlman, "Mechanism of inclusion damage in laser glass," J. Appl. Phys. 41, 4023-4037 (1970).
    [CrossRef]
  4. M. Lenzner, "Femtosecond laser-induced damage of dielectrics," Int. J. Mod. Phys. B 13, 1559-1578 (1999).
    [CrossRef]
  5. M. F. Koldunov, A. A. Manenkov, and L. L. Pokotilo, "Mechanical damage in transparent solids caused by laser pulse of different durations," Quantum Electron. 32, 335-340 (2002).
    [CrossRef]
  6. M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, "Efficiency of various mechanisms of the laser damage in transparent solids," Quantum Electron. 32, 623-628 (2002).
    [CrossRef]
  7. M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
    [CrossRef]
  8. T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
    [CrossRef]
  9. P. Mora, "Plasma expansion into a vacuum," Phys. Rev. Lett. 90, 185002 (2003).
  10. N. Bloembergen, "Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics," Appl. Opt. 12, 661-664 (1973).
    [CrossRef] [PubMed]
  11. H. G. Idenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-298 (1952).
    [CrossRef]
  12. Z. Guan and J. P. Lu, "The basic theory of numerical method," in Ke Xu, 1st ed. (Higher Education Press, 1998), p. 226, in Chinese.
  13. Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
    [CrossRef]
  14. X. C. Shen, "The spectrum and optical character of the semiconductor," in DePing Yan, 2nd ed. (Chinese Scientific, 2002), p. 68.
  15. L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).
  16. C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.
  17. M. F. Koldunov, A. A. Manenkov, and I. L. Pokotolo, The Theory of Inclusion Initiated Laser in Optical Materials: The Thermal Explosion Mechanism, Damage in Laser Materials: 1988, NIST special publication 775 (NIST, 1989), pp. 502-515.
  18. T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 1: experimental," IEEE , J. Quantum Electron. QE-17, 2041-2053 (1981).
    [CrossRef]
  19. T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 2: theory," IEEE J. Quantum Electron. QE-17, 2053-2065 (1981).
    [CrossRef]
  20. Z. Dongping, "Detection & suppressing of micro-defects in optical coatings and laser-induced damage mechanism," doctoral dissertation (Shanghai Institute of Optics and Fine Mechanics, 2005), in Chinese.
  21. S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.
  22. S. S. Cohen, J. B. Bernstein, and P. W. Wyatt, "The effect of multiple lasers on damage to thin metallic films," J. Appl. Phys. 71, 630-637 (1992).
    [CrossRef]
  23. H. W. Huang, "Spherical Kelvin shell endured seasonal inner pressure," J. Chin. Univ. Geosci. (Earth Sciences edition) 23, 326-328 (1998).
  24. Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.
  25. Z.-l. Xia, J.-d. Shao, Z.-x. Fan, and S.-g. Wu, "Formation mechanism of bubbles in the surface of films induced by long pulse width laser," High Power Laser Particle Beams 18,575-579 (2006), in Chinese.

2006 (1)

Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
[CrossRef]

2002 (2)

M. F. Koldunov, A. A. Manenkov, and L. L. Pokotilo, "Mechanical damage in transparent solids caused by laser pulse of different durations," Quantum Electron. 32, 335-340 (2002).
[CrossRef]

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, "Efficiency of various mechanisms of the laser damage in transparent solids," Quantum Electron. 32, 623-628 (2002).
[CrossRef]

1999 (1)

M. Lenzner, "Femtosecond laser-induced damage of dielectrics," Int. J. Mod. Phys. B 13, 1559-1578 (1999).
[CrossRef]

1998 (1)

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

1997 (1)

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

1992 (1)

S. S. Cohen, J. B. Bernstein, and P. W. Wyatt, "The effect of multiple lasers on damage to thin metallic films," J. Appl. Phys. 71, 630-637 (1992).
[CrossRef]

1981 (2)

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 1: experimental," IEEE , J. Quantum Electron. QE-17, 2041-2053 (1981).
[CrossRef]

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 2: theory," IEEE J. Quantum Electron. QE-17, 2053-2065 (1981).
[CrossRef]

1973 (1)

1970 (1)

R. W. Hopper and D. R. Uhlman, "Mechanism of inclusion damage in laser glass," J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

1965 (1)

L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).

1952 (1)

H. G. Idenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-298 (1952).
[CrossRef]

Bernstein, J. B.

S. S. Cohen, J. B. Bernstein, and P. W. Wyatt, "The effect of multiple lasers on damage to thin metallic films," J. Appl. Phys. 71, 630-637 (1992).
[CrossRef]

Bloembergen, N.

Cohen, S. S.

S. S. Cohen, J. B. Bernstein, and P. W. Wyatt, "The effect of multiple lasers on damage to thin metallic films," J. Appl. Phys. 71, 630-637 (1992).
[CrossRef]

Deng, D.

Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
[CrossRef]

Ditmire, T.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Dobosz, S.

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

Dongping, Z.

Z. Dongping, "Detection & suppressing of micro-defects in optical coatings and laser-induced damage mechanism," doctoral dissertation (Shanghai Institute of Optics and Fine Mechanics, 2005), in Chinese.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Fan, Z.

Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
[CrossRef]

S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.

Fan, Z.-x.

Z.-l. Xia, J.-d. Shao, Z.-x. Fan, and S.-g. Wu, "Formation mechanism of bubbles in the surface of films induced by long pulse width laser," High Power Laser Particle Beams 18,575-579 (2006), in Chinese.

Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Fu, L. C.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Guan, Z.

Z. Guan and J. P. Lu, "The basic theory of numerical method," in Ke Xu, 1st ed. (Higher Education Press, 1998), p. 226, in Chinese.

Guenther, A. H.

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 1: experimental," IEEE , J. Quantum Electron. QE-17, 2041-2053 (1981).
[CrossRef]

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 2: theory," IEEE J. Quantum Electron. QE-17, 2053-2065 (1981).
[CrossRef]

Hay, N.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

He, H.-b.

Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.

Hopper, R. W.

R. W. Hopper and D. R. Uhlman, "Mechanism of inclusion damage in laser glass," J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

Huang, H. W.

H. W. Huang, "Spherical Kelvin shell endured seasonal inner pressure," J. Chin. Univ. Geosci. (Earth Sciences edition) 23, 326-328 (1998).

Hutchinson, M. H. R.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Idenberg, H. G.

H. G. Idenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-298 (1952).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).

Koldunov, M. F.

M. F. Koldunov, A. A. Manenkov, and L. L. Pokotilo, "Mechanical damage in transparent solids caused by laser pulse of different durations," Quantum Electron. 32, 335-340 (2002).
[CrossRef]

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, "Efficiency of various mechanisms of the laser damage in transparent solids," Quantum Electron. 32, 623-628 (2002).
[CrossRef]

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotolo, The Theory of Inclusion Initiated Laser in Optical Materials: The Thermal Explosion Mechanism, Damage in Laser Materials: 1988, NIST special publication 775 (NIST, 1989), pp. 502-515.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Lenzner, M.

M. Lenzner, "Femtosecond laser-induced damage of dielectrics," Int. J. Mod. Phys. B 13, 1559-1578 (1999).
[CrossRef]

Lezius, M.

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

Li, G. J.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Lu, J. P.

Z. Guan and J. P. Lu, "The basic theory of numerical method," in Ke Xu, 1st ed. (Higher Education Press, 1998), p. 226, in Chinese.

Manenkov, A. A.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, "Efficiency of various mechanisms of the laser damage in transparent solids," Quantum Electron. 32, 623-628 (2002).
[CrossRef]

M. F. Koldunov, A. A. Manenkov, and L. L. Pokotilo, "Mechanical damage in transparent solids caused by laser pulse of different durations," Quantum Electron. 32, 335-340 (2002).
[CrossRef]

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotolo, The Theory of Inclusion Initiated Laser in Optical Materials: The Thermal Explosion Mechanism, Damage in Laser Materials: 1988, NIST special publication 775 (NIST, 1989), pp. 502-515.

Marangos, J. P.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Mason, M. B.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Mora, P.

P. Mora, "Plasma expansion into a vacuum," Phys. Rev. Lett. 90, 185002 (2003).

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Nielsen, P. E.

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 2: theory," IEEE J. Quantum Electron. QE-17, 2053-2065 (1981).
[CrossRef]

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 1: experimental," IEEE , J. Quantum Electron. QE-17, 2041-2053 (1981).
[CrossRef]

Normand, D.

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Pokotilo, I. L.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, "Efficiency of various mechanisms of the laser damage in transparent solids," Quantum Electron. 32, 623-628 (2002).
[CrossRef]

Pokotilo, L. L.

M. F. Koldunov, A. A. Manenkov, and L. L. Pokotilo, "Mechanical damage in transparent solids caused by laser pulse of different durations," Quantum Electron. 32, 335-340 (2002).
[CrossRef]

Pokotolo, I. L.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotolo, The Theory of Inclusion Initiated Laser in Optical Materials: The Thermal Explosion Mechanism, Damage in Laser Materials: 1988, NIST special publication 775 (NIST, 1989), pp. 502-515.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Schmidt, M.

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

Shao, J.

Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
[CrossRef]

S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.

Shao, J.-d.

Z.-l. Xia, J.-d. Shao, Z.-x. Fan, and S.-g. Wu, "Formation mechanism of bubbles in the surface of films induced by long pulse width laser," High Power Laser Particle Beams 18,575-579 (2006), in Chinese.

Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.

Shao, S.-y.

Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.

Shen, X. C.

X. C. Shen, "The spectrum and optical character of the semiconductor," in DePing Yan, 2nd ed. (Chinese Scientific, 2002), p. 68.

Shen, Y.-m.

Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.

Sheng, L. Q.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Springate, E.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

Sun, C. W.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Tisch, J. W. G.

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Tranter, C. J.

H. G. Idenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-298 (1952).
[CrossRef]

Uhlman, D. R.

R. W. Hopper and D. R. Uhlman, "Mechanism of inclusion damage in laser glass," J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

Walker, T. W.

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 1: experimental," IEEE , J. Quantum Electron. QE-17, 2041-2053 (1981).
[CrossRef]

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 2: theory," IEEE J. Quantum Electron. QE-17, 2053-2065 (1981).
[CrossRef]

Wen, G. C.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Wu, S.

S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.

Wu, S.-g.

Z.-l. Xia, J.-d. Shao, Z.-x. Fan, and S.-g. Wu, "Formation mechanism of bubbles in the surface of films induced by long pulse width laser," High Power Laser Particle Beams 18,575-579 (2006), in Chinese.

Wyatt, P. W.

S. S. Cohen, J. B. Bernstein, and P. W. Wyatt, "The effect of multiple lasers on damage to thin metallic films," J. Appl. Phys. 71, 630-637 (1992).
[CrossRef]

Xia, Z.

Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
[CrossRef]

Xia, Z.-l.

Z.-l. Xia, J.-d. Shao, Z.-x. Fan, and S.-g. Wu, "Formation mechanism of bubbles in the surface of films induced by long pulse width laser," High Power Laser Particle Beams 18,575-579 (2006), in Chinese.

Xiu, F. Z.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Yi, K.

S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.

Zhao, Y.

S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.

Zhe, C. Y.

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Br. J. Appl. Phys. (1)

H. G. Idenberg and C. J. Tranter, "Heat flow in an infinite medium heated by a sphere," Br. J. Appl. Phys. 3, 296-298 (1952).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Xia, D. Deng, Z. Fan, and J. Shao, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phys. Lett. 23, 2179-2182 (2006).
[CrossRef]

IEEE (1)

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 1: experimental," IEEE , J. Quantum Electron. QE-17, 2041-2053 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. W. Walker, A. H. Guenther, and P. E. Nielsen, "Pulsed laser-induced damage to thin-film optical coatings--part 2: theory," IEEE J. Quantum Electron. QE-17, 2053-2065 (1981).
[CrossRef]

Int. J. Mod. Phys. B (1)

M. Lenzner, "Femtosecond laser-induced damage of dielectrics," Int. J. Mod. Phys. B 13, 1559-1578 (1999).
[CrossRef]

J. Appl. Phys. (2)

R. W. Hopper and D. R. Uhlman, "Mechanism of inclusion damage in laser glass," J. Appl. Phys. 41, 4023-4037 (1970).
[CrossRef]

S. S. Cohen, J. B. Bernstein, and P. W. Wyatt, "The effect of multiple lasers on damage to thin metallic films," J. Appl. Phys. 71, 630-637 (1992).
[CrossRef]

Phys. Rev. Lett. (3)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef] [PubMed]

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, "Explosion dynamics of rare gas clusters in strong laser fields," Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, J. P. Marangos, and M. H. R. Hutchinson, "High energy ion explosion of atomic clusters: transition from molecular to plasma behavior," Phys. Rev. Lett. 78, 2732-2735 (1997).
[CrossRef]

Quantum Electron. (2)

M. F. Koldunov, A. A. Manenkov, and L. L. Pokotilo, "Mechanical damage in transparent solids caused by laser pulse of different durations," Quantum Electron. 32, 335-340 (2002).
[CrossRef]

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotilo, "Efficiency of various mechanisms of the laser damage in transparent solids," Quantum Electron. 32, 623-628 (2002).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).

Other (10)

C. W. Sun, L. Q. Sheng, F. Z. Xiu, C. Y. Zhe, L. C. Fu, G. J. Li, and G. C. Wen, Laser Irradiating Effect Ion, 1st ed. (National Defence Industry Press, 2002), p. 93.

M. F. Koldunov, A. A. Manenkov, and I. L. Pokotolo, The Theory of Inclusion Initiated Laser in Optical Materials: The Thermal Explosion Mechanism, Damage in Laser Materials: 1988, NIST special publication 775 (NIST, 1989), pp. 502-515.

X. C. Shen, "The spectrum and optical character of the semiconductor," in DePing Yan, 2nd ed. (Chinese Scientific, 2002), p. 68.

Z. Dongping, "Detection & suppressing of micro-defects in optical coatings and laser-induced damage mechanism," doctoral dissertation (Shanghai Institute of Optics and Fine Mechanics, 2005), in Chinese.

S. Wu, J. Shao, K. Yi, Y. Zhao, and Z. Fan, "Analysis of inclusions in raw materials of HfO2," Rare Metal Mater. Eng. 35,757-760 (2006), in Chinese.

P. Mora, "Plasma expansion into a vacuum," Phys. Rev. Lett. 90, 185002 (2003).

Z. Guan and J. P. Lu, "The basic theory of numerical method," in Ke Xu, 1st ed. (Higher Education Press, 1998), p. 226, in Chinese.

H. W. Huang, "Spherical Kelvin shell endured seasonal inner pressure," J. Chin. Univ. Geosci. (Earth Sciences edition) 23, 326-328 (1998).

Y.-m. Shen, H.-b. He, S.-y. Shao, Z.-x. Fan, and J.-d. Shao, "Influences of deposition temperature on residual stress of HfO2 films," High Power Laser Particle Beams 17,1812-1816 (2005), in Chinese.

Z.-l. Xia, J.-d. Shao, Z.-x. Fan, and S.-g. Wu, "Formation mechanism of bubbles in the surface of films induced by long pulse width laser," High Power Laser Particle Beams 18,575-579 (2006), in Chinese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Temperature distribution in films when an intensive absorbing inclusion is included. The power density of the laser pulse is 1 GW / cm 2 ; the pulse width is 12 ns; the depth that the inclusions are embedded is 2000   nm ; and the radii of the inclusions are 50, 100, 200, and 400   nm , respectively.

Fig. 2
Fig. 2

Damage morphology of films under different laser fluence density. In (a) and (b), every small grid denotes 10 μ m and every large grid denotes 50 μ m . In (c) the bottom of the damage pit is rough and it is formed because of the remainder of the melted materials.

Fig. 3
Fig. 3

Sketch map of the inclusion in films (left); sketch map of the spherical shell model (right). The depth that the inclusion embedded is D 0; the radius of the inclusion is a.

Fig. 4
Fig. 4

Circumferential stress in films that have inclusions with different radii included. The laser power density is 1 GW / cm 2 .

Fig. 5
Fig. 5

Sketch of the thermal stress distribution and the dynamic stress distribution.

Fig. 6
Fig. 6

Circumferential stress in a film when it is irradiated by different laser power densities. The radius of the inclusion is 200   nm .

Fig. 7
Fig. 7

Evolution of the circumferential stress distribution in films. The laser power density is 1 GW / cm 2 ; the radius of the inclusion is 200   nm .

Fig. 8
Fig. 8

Evolution of the radial expansion velocity and acceleration of the liquid–solid interface. The radius of the inclusion is 200   nm ; the power density of the laser pulse is 1 GW / cm 2 .

Fig. 9
Fig. 9

Radial expansion velocity of the liquid–solid interface.

Fig. 10
Fig. 10

Strain of the melted zone initialized by the inclusions.

Fig. 11
Fig. 11

Size of the damage pit in films initialized by the inclusion. The power density of the laser pulse is 1 GW / cm 2 ; the host material is HfO 2 .

Tables (1)

Tables Icon

Table 1 Main Parameters Used in Evaluation

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

T i t = χ i r 2 r ( r 2 T i r ) + χ i A i ( T i ) K i , when   0   r < a ,   t > 0 ,
T f t = χ f r 2 r ( r 2 T f r ) , when   r > a , t > 0 ,
T i = T f = 0 , when   t = 0 ,
T i = T f , when   r = a ,
K i T i r = K f T f r , when   r = a ,
T i r = 0   and   T f r =   are   finite   values .
σ ϕ ϕ   max σ th ,
r [ r 2 r ( r 2 u r ) ] = α 1 + ν 1 ν T ( r , t ) t ,
{ E ε r r = σ r r ν ( σ θ θ + σ ϕ ϕ ) + E α T , E ε θ θ = σ θ θ ν ( σ r r + σ ϕ ϕ ) + E α T , E ε ϕ ϕ = σ ϕ ϕ ν ( σ θ θ + σ r r ) + E α T ,
ε r r = u r r , ε θ θ = ε ϕ ϕ = u r r ,
σ ϕ ϕ ( r , t ) = α E 1 ν [ 1 r 3 0 r T ( r , t ) r 2 d r T ( r , t ) ] .
R m = R + 1 + ν r 1 ν r 0 R α r T ( r , t ) d r ,
{ α r = α i , ν r = ν i when r a α r = α h , ν r = ν h when r > a .
P = P 1 + P 2 ,
( P + B 1 V 2 ) ( V B 2 ) = R T ,
P 1 = ( D 3 R m 3 ) ( R m R m ) R m 3 ( R m 3 λ + 2 μ + D 3 4 μ · R m 2 ) .
P 2 = ξ ρ ( D 3 R 3 ) 3 r 2 r ̈ .
σ ϕ ϕ = R m 3 P 1 D 3 R m 3 ( 1 + D 3 2 r 3 ) .
T ( V B 2 ) γ 1 = const .
r i n + 1 = r i n + h ν i n + h 2 F i n / ( 2 ξ m ) ,
ν i n + 1 = ν i n + h ( F i n + 1 + F i n ) / ( 2 ξ m ) ,
F i n = ( P P 1 ) × 4 π r 2 / ( ξ m ) ,
4 3 π R i 3 ρ M i k B T = S γ ,

Metrics