Abstract

Although most current diffuse optical brain imaging systems use only nearest- neighbor measurement geometry, the spatial resolution and quantitative accuracy of the imaging can be improved through the collection of overlapping sets of measurements. A continuous-wave diffuse optical imaging system that combines frequency encoding with time-division multiplexing to facilitate overlapping measurements of brain activation is described. Phantom measurements to confirm the expected improvement in spatial resolution and quantitative accuracy are presented. Experimental results showing the application of this instrument for imaging human brain activation are also presented. The observed improvement in spatial resolution is confirmed by functional magnetic resonance imaging.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003).
    [CrossRef] [PubMed]
  2. M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
    [CrossRef] [PubMed]
  3. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
    [CrossRef] [PubMed]
  4. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
    [CrossRef]
  5. B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
    [CrossRef]
  6. M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988).
    [CrossRef] [PubMed]
  7. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
    [CrossRef] [PubMed]
  8. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
    [CrossRef] [PubMed]
  9. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).
  10. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
    [CrossRef] [PubMed]
  11. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160 ms temporal resolution," Opt. Express 6, 49-57 (2000).
    [CrossRef] [PubMed]
  12. D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
    [CrossRef] [PubMed]
  13. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
    [CrossRef] [PubMed]
  14. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
    [CrossRef] [PubMed]
  15. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
    [CrossRef]
  16. A. M. Dale, "Optimal experimental design for event-related fMRI," Human Brain Mapp. 8, 109-114 (1999).
    [CrossRef]
  17. Photon Migration Imaging Lab, Martinos Center for Biomedical Imaging, http://www.nmr.mgh.harvard.edu/PMI/.
  18. J. T., Serences, "A comparison of methods for characterizing the event-related BOLD time series in rapid fMRI," Neuroimage 21, 1690-1700 (2004).
    [CrossRef] [PubMed]
  19. H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999).
    [CrossRef] [PubMed]
  20. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  21. R. W. Cox and A. Jesmanowicz, "Real-time 3D image registration for functional MRI," Magn. Reson. Med. 42, 1014-1018 (1999).
    [CrossRef] [PubMed]
  22. E. W. Weisstein, "Lambert azimuthal equal-area projection," MathWorld, http://mathworld.wolfram.com/LambertAzimuthal-Equal-AreaProjection.html.

2004 (3)

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
[CrossRef] [PubMed]

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
[CrossRef] [PubMed]

J. T., Serences, "A comparison of methods for characterizing the event-related BOLD time series in rapid fMRI," Neuroimage 21, 1690-1700 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003).
[CrossRef] [PubMed]

2002 (1)

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

2001 (1)

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (3)

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999).
[CrossRef] [PubMed]

R. W. Cox and A. Jesmanowicz, "Real-time 3D image registration for functional MRI," Magn. Reson. Med. 42, 1014-1018 (1999).
[CrossRef] [PubMed]

A. M. Dale, "Optimal experimental design for event-related fMRI," Human Brain Mapp. 8, 109-114 (1999).
[CrossRef]

1995 (3)

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

1993 (2)

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

1992 (2)

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

1988 (1)

M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988).
[CrossRef] [PubMed]

Alter, C.

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

Arridge, S. R.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).

Barber, D. C.

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999).
[CrossRef] [PubMed]

Barbour, R. L.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

Basarab-Horwath, I.

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999).
[CrossRef] [PubMed]

Belliveau, J. W.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004).
[CrossRef] [PubMed]

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Chance, B.

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

Chen, K.

Cheng, X.

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Chesler, D. A.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Cho, E.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

Chu, U. A.

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

Cohen, M. S.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Cope, M.

M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988).
[CrossRef] [PubMed]

Corballis, P. M.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

Cox, R. W.

R. W. Cox and A. Jesmanowicz, "Real-time 3D image registration for functional MRI," Magn. Reson. Med. 42, 1014-1018 (1999).
[CrossRef] [PubMed]

Dale, A. M.

A. M. Dale, "Optimal experimental design for event-related fMRI," Human Brain Mapp. 8, 109-114 (1999).
[CrossRef]

Dehghani, H.

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999).
[CrossRef] [PubMed]

Delpy, D. T.

M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988).
[CrossRef] [PubMed]

Dirnagl, U.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Ellermann, J. M.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Fabiani, M.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

Fantini, S.

M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160 ms temporal resolution," Opt. Express 6, 49-57 (2000).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

Ferrari, M.

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
[CrossRef] [PubMed]

Filiaci, M.

Franceschini, M. A.

Friedman, D.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

Gaudette, T. J.

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Goldberg, I. E.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160 ms temporal resolution," Opt. Express 6, 49-57 (2000).
[CrossRef] [PubMed]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

Gratton, G.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

Grebert, D.

Hielscher, A. H.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

Hock, C.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Hood, D. C.

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

Hoppel, B. E.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003).
[CrossRef] [PubMed]

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Jesmanowicz, A.

R. W. Cox and A. Jesmanowicz, "Real-time 3D image registration for functional MRI," Magn. Reson. Med. 42, 1014-1018 (1999).
[CrossRef] [PubMed]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Kennedy, D. N.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Kim, S. G.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Koizumi, H.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Kwong, K. K.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Lasker, J. M.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

Lipton, L.

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

Locker, M.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

Maki, A.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Mandeville, J. B.

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Marota, J. J. A.

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Menon, R.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Merkle, H.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Mottola, L.

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
[CrossRef] [PubMed]

Ogawa, S.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Planck, J.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Poncelet, B. P.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Quaresima, V.

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
[CrossRef] [PubMed]

Schleinkofer, L.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Schmitz, C. H.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

Serences, J. T.

J. T., Serences, "A comparison of methods for characterizing the event-related BOLD time series in rapid fMRI," Neuroimage 21, 1690-1700 (2004).
[CrossRef] [PubMed]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Strangman, G.

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

Tank, D. W.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Toronov, V.

Turner, R.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Ugurbil, K.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

Villringer, A.

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Watanabe, E.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Weisskoff, R. M.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Weisstein, E. W.

E. W. Weisstein, "Lambert azimuthal equal-area projection," MathWorld, http://mathworld.wolfram.com/LambertAzimuthal-Equal-AreaProjection.html.

Yamashita, Y.

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Zhuang, Z.

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

Can. J. Appl. Physiol. (1)

M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
[CrossRef] [PubMed]

Human Brain Mapp. (1)

A. M. Dale, "Optimal experimental design for event-related fMRI," Human Brain Mapp. 8, 109-114 (1999).
[CrossRef]

J. Cogn. Neurosci. (1)

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995).
[CrossRef]

Magn. Reson. Med. (1)

R. W. Cox and A. Jesmanowicz, "Real-time 3D image registration for functional MRI," Magn. Reson. Med. 42, 1014-1018 (1999).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988).
[CrossRef] [PubMed]

Med. Phys. (1)

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Neuroimage (2)

D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001).
[CrossRef] [PubMed]

J. T., Serences, "A comparison of methods for characterizing the event-related BOLD time series in rapid fMRI," Neuroimage 21, 1690-1700 (2004).
[CrossRef] [PubMed]

Neurosci. Lett. (1)

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Physiol. Meas (1)

H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993).
[CrossRef]

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992).
[CrossRef] [PubMed]

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992).
[CrossRef] [PubMed]

Psychophysiology (2)

G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995).
[CrossRef] [PubMed]

Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002).
[CrossRef]

Other (4)

Photon Migration Imaging Lab, Martinos Center for Biomedical Imaging, http://www.nmr.mgh.harvard.edu/PMI/.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

E. W. Weisstein, "Lambert azimuthal equal-area projection," MathWorld, http://mathworld.wolfram.com/LambertAzimuthal-Equal-AreaProjection.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Photo of CW-5 imaging system and DAQ-data acquisition cards.

Fig. 2
Fig. 2

Structure of the CW imager. Signal flow from one source to one detector: F, optical fiber; APD, avalanche photodetector module; Amp, amplifier; and DAQ is the data acquisition and control card.

Fig. 3
Fig. 3

Structure of the IQ digital demodulator program for demodulating one specific source. The signal is multiplied by the sine and cosine reference frequencies generated in the software, and then a Butterworth low-pass filter (LPF) (20 Hz bandwidth) is used to pickup the low frequency I and Q signals.

Fig. 4
Fig. 4

State diagram with positions of sources (x’s) and detectors (o’s) indicated. The lines connect the active sources with the first- and second-nearest-neighbor detectors. Sources active in states 1, 2, and 3 are (1, 5 and 6), (2 and 7), and (3, 4, and 8), respectively.

Fig. 5
Fig. 5

Demodulated laser signals received by detector 1 from sources 6, 7, and 4.

Fig. 6
Fig. 6

Homogeneous dynamic phantom for system characterization. Positions of sources (x’s) and detectors (o’s) are indicated.

Fig. 7
Fig. 7

Heterogeneous dynamic phantom that simulates brain activation. The positions of the sources (x’s) and detectors (o’s) are indicated.

Fig. 8
Fig. 8

Time course for brain activation simulating phantom. (a) Time courses with increase in optical density (decrease in light amplitude) for detectors 12, 8, and 9 with light received from source 5, (b) probe geometry where the circle corresponds to the projection of the spherical inhomogeneity on the probe, and (c) time courses of the averaged change in optical density for detectors 12, 8, and 9. The black bar corresponds to the period of injection of ink bolus.

Fig. 9
Fig. 9

Comparison of backprojection images obtained from first- and second-nearest-neighbor measurements with the DOT image for the brain activation simulating phantom. The positions of sources (x’s) and detectors (o’s) are indicated by the numbers in the reconstructed images. The dotted circle corresponds to the actual projection of the sphere centered 2.6   cm below the probe.

Fig. 10
Fig. 10

Temporal Profile of hemodynamic activity for subject A. HbO, oxyhemoglobin; HbR, deoxyhemoglobin; S, source; and D, detector. The curve labeled HbO S7 D6 displays the Beer–Lambert estimate of oxyhemoglobin concentration change measured between source 7 and detector 6 and averaged across all 5 runs.

Fig. 11
Fig. 11

Qualitative comparison of deoxyhemoglobin maps reconstructed from optical data by the different image reconstruction algorithms with projected fMRI images for subject A. The positions of the sources (x’s) and detectors (o’s) are indicated by the numbers in the reconstructed images.

Fig. 12
Fig. 12

Qualitative comparison of deoxyhemoglobin maps reconstructed from optical data by the different image reconstruction algorithms with projected fMRI images for subject B. The positions of sources (x’s) and detectors (o’s) are indicated by the numbers in the reconstructed images.

Fig. 13
Fig. 13

Qualitative comparison of deoxyhemoglobin maps reconstructed from optical data by the different image reconstruction algorithms with projected fMRI images for subject C. The positions of sources (x’s) and detectors (o’s) are indicated by the numbers in the reconstructed images.

Tables (2)

Tables Icon

Table 1 Performance Characteristics of CW-5

Tables Icon

Table 2 Area of Brain Activation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y = A x ,
x ^ = A T ( A A T + λ I ) 1 y ,
x ^ = ( A S ) T y ,
E i = 1 2 K ( x i x ^ i ) 2 ,

Metrics