Abstract

We designed what is believed to be a novel structure based on bimetallic sheets to enhance temperature sensitivity of fiber Bragg gratings. The two ends of bimetallic sheets were fixed by bolts, and a fiber Bragg grating was longitudinally affixed to one of the sheets whose expansion coefficient was larger than that of the other. The theoretical and experimental results show that the temperature sensitivity of the fiber Bragg grating was enhanced dramatically by the structure. For example, the temperature sensitivity reached 0.08014nm/°C when the bimetallic sheets were made of aluminum and iron, which are more than eight times that of a bare fiber Bragg grating. Moreover, it was experimentally demonstrated that the structure has excellent linearity, reversibility, and stability.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating filter laser," J. Opt. Soc. Am. A 19, 1997-1981 (1994).
  3. W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
    [CrossRef]
  4. W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).
  5. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
    [CrossRef]
  6. F. J. Arregui, R. O. Claus, K. L. Cooper, C. F. Valdivielso, and I. R. Matías, "Optical fiber gas sensor based on self-assembled gratings," J. Lightwave Technol. 19, 1932-1937 (2001).
    [CrossRef]
  7. S. Gupta, T. Mizunami, T. Yamao, and T. Shimomura, "Fiber Bragg grating cryogenic temperature sensors," Appl. Opt. 35, 5202-5205 (1996).
    [CrossRef] [PubMed]
  8. G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
    [CrossRef]
  9. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, "Fiber Bragg grating temperature sensor with controllable sensitivity," Appl. Opt. 38, 2752-2754 (1999).
    [CrossRef]
  10. F. Qin-Shan, Mechanics of Materials, (Beijing: Higher Education Press, 2000), pp. 127-131 (in Chinese).
  11. S. I-En Lin, "Tunable athermal multi-FBG package using a bending bimetal structure," J. Electron. Packag. 54, 54-59 (2002).
    [CrossRef]

2002 (1)

S. I-En Lin, "Tunable athermal multi-FBG package using a bending bimetal structure," J. Electron. Packag. 54, 54-59 (2002).
[CrossRef]

2001 (2)

W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).

F. J. Arregui, R. O. Claus, K. L. Cooper, C. F. Valdivielso, and I. R. Matías, "Optical fiber gas sensor based on self-assembled gratings," J. Lightwave Technol. 19, 1932-1937 (2001).
[CrossRef]

2000 (1)

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

1999 (1)

1998 (1)

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

1997 (2)

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1996 (1)

1994 (1)

G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating filter laser," J. Opt. Soc. Am. A 19, 1997-1981 (1994).

Andres, M. V.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Arregui, F. J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Ball, G. A.

G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating filter laser," J. Opt. Soc. Am. A 19, 1997-1981 (1994).

Byun, J. O.

Chuang, T. J.

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

Claus, R. O.

Cooper, K. L.

Cruz, J. L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Diez, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Ding, L.

W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).

Dong, L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Dong, X. Y.

W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

Feng, D. J.

W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Gupta, S.

I-En Lin, S.

S. I-En Lin, "Tunable athermal multi-FBG package using a bending bimetal structure," J. Electron. Packag. 54, 54-59 (2002).
[CrossRef]

Jung, J.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kim, N. S.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

LeBlance, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B.

Lin, G.-C.

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

Matías, I. R.

Mizunami, T.

Morey, W. W.

G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating filter laser," J. Opt. Soc. Am. A 19, 1997-1981 (1994).

Nam, H.

Ortega, B.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Qin, Z. X.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

Qin-Shan, F.

F. Qin-Shan, Mechanics of Materials, (Beijing: Higher Education Press, 2000), pp. 127-131 (in Chinese).

Segura, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

Shih, M. C.

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

Shimomura, T.

Valdivielso, C. F.

Wang, L.

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

Yamao, T.

Yang, C. C.

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

Zhang, W. G.

W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

Zhao, Q. D.

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

Appl. Opt. (2)

Chin. J. Lasers (1)

W. G. Zhang, D. J. Feng, L. Ding, and X. Y. Dong, "Linear quasi-chirp-free tuning of fiber grating using torsional beam," Chin. J. Lasers 10, 174-178 (2001).

Electron. Lett. (2)

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, "Fiber Bragg gratings tuned and chirped using magnetic fields," Electron. Lett. 33, 235-236 (1997).
[CrossRef]

W. G. Zhang, X. Y. Dong, D. J. Feng, Z. X. Qin, and Q. D. Zhao, "Linearly fiber grating-type sensing tuning by applying torsion stress," Electron. Lett. 36, 1686-1688 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G.-C. Lin, L. Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, "Thermal performance of metal-clad fiber Bragg grating sensors," IEEE Photon. Technol. Lett. 10, 406-408 (1998).
[CrossRef]

J. Electron. Packag. (1)

S. I-En Lin, "Tunable athermal multi-FBG package using a bending bimetal structure," J. Electron. Packag. 54, 54-59 (2002).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlance, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

F. J. Arregui, R. O. Claus, K. L. Cooper, C. F. Valdivielso, and I. R. Matías, "Optical fiber gas sensor based on self-assembled gratings," J. Lightwave Technol. 19, 1932-1937 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

G. A. Ball and W. W. Morey, "Compression-tuned single-frequency Bragg grating filter laser," J. Opt. Soc. Am. A 19, 1997-1981 (1994).

Other (1)

F. Qin-Shan, Mechanics of Materials, (Beijing: Higher Education Press, 2000), pp. 127-131 (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of enhancing temperature sensitivity.

Fig. 2
Fig. 2

Reflected spectra when the temperature is 20 ° C , 50 ° C , and 100 ° C . (a) The bimetallic sheets are made of copper and iron (group a). (b) The bimetallic sheets are made of aluminum and iron (group b).

Fig. 3
Fig. 3

Shift of the center wavelength versus temperature.

Fig. 4
Fig. 4

The hysteresis and comeback properties of the bimetallic sheets: –•– increasing temperature from 20 ° C to 100 ° C , –▴– increasing temperature from 25 ° C to 80 ° C , –■– decreasing temperature from 80 ° C to 25 ° C , –★– decreasing temperature from 100 ° C to 20 ° C .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ ,
Δ λ B / λ B = ( α + ζ ) Δ T = K T Δ T ,
Δ λ B / λ B = [ α + ζ + ( 1 p e ) ( α sub α ) ] ΔT = [ K T + ( α sub α ) K ε ] ΔT ,
Δ λ B / λ B = [ K T + ( α sub α ) K ε + a K ε ( α sub α 1 ) ] Δ T = [ K T + ( α sub α ) K ε + K ] Δ T ,

Metrics