Abstract

We present a statistical analysis of a large set of absorption spectra of phytoplankton, measured in natural samples collected from ocean water, in conjunction with detailed pigment concentrations. We processed the absorption spectra with a sophisticated neural network method suitable for classifying complex phenomena, the so-called self-organizing maps (SOM) proposed by Kohonen [Kohonen, Self Organizing Maps (Springer-Verlag, 1984)]. The aim was to compress the information embedded in the data set into a reduced number of classes characterizing the data set, which facilitates the analysis. By processing the absorption spectra, we were able to retrieve well-known relationships among pigment concentrations and to display them on maps to facilitate their interpretation. We then showed that the SOM enabled us to extract pertinent information about pigment concentrations normalized to chlorophyll a. We were able to propose new relationships between the fucoxanthin∕Tchl-a ratio and the derivative of the absorption spectrum at 510  nm and between the Tchl-b∕Tchl-a ratio and the derivative at 640   nm. Finally, we demonstrate the possibility of inverting the absorption spectrum to retrieve the pigment concentrations with better accuracy than a regression analysis using the Tchl-a concentration derived from the absorption at 440   nm. We also discuss the data coding used to build the self-organizing map. This methodology is very general and can be used to analyze a large class of complex data.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Detection of phytoplankton pigments from ocean color: improved algorithms

Shubha Sathyendranath, Frank E. Hoge, Trevor Platt, and Robert N. Swift
Appl. Opt. 33(6) 1081-1089 (1994)

Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments

Eric M. Louchard, R. Pamela Reid, Carol F. Stephens, Curtiss O. Davis, Robert A. Leathers, T. Valerie Downes, and Robert Maffione
Opt. Express 10(26) 1573-1584 (2002)

Reducing variability that is due to secondary pigments in the retrieval of chlorophyll a concentration from marine reflectance: a case study in the western equatorial Pacific Ocean

Lydwine Gross, Robert Frouin, Cécile Dupouy, Jean Michel André, and Sylvie Thiria
Appl. Opt. 43(20) 4041-4054 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription