Abstract

A notable change in the photochromic characteristics was observed when the benzene solution of spirobenzopyran was put in nanoholes of anodic alumina. The absorption peak that appeared in the ultraviolet irradiation process shifted to a shorter wavelength, and the decay time of the decoloration process became 200 times longer than that of the original solution. After a preservation period of several days, however, both the absorption wavelength and the decay time recovered to those of the original solution. These experimental results suggest that the photochromic isomerization in the alumina nanoholes is affected by the large surface area of the matrix rather than the limited free volume.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Brown, Photochromism (Wiley, 1971).
  2. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
    [CrossRef] [PubMed]
  3. J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
    [CrossRef]
  4. A. Yacoubian and T. M. Aye, "Enhanced optical modulation using azo-dye polymers," Appl. Opt. 32, 3073-3080 (1993).
    [CrossRef] [PubMed]
  5. T. Okamoto, T. Kamiyama, and I. Yamaguchi, "All-optical spatial light modulator with surface plasmon resonance," Opt. Lett. 18, 1570-1572 (1993).
    [CrossRef] [PubMed]
  6. N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes," Jpn. J. Appl. Phys. Part 1 33, 1550-1553 (1994).
    [CrossRef]
  7. D. Levy and F. D. Monte, "Photochromic doped solgel materials for fiberoptic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
    [CrossRef]
  8. K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye," J. Appl. Phys. 83, 2894-2900 (1998).
    [CrossRef]
  9. J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
    [CrossRef]
  10. S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
    [CrossRef]
  11. M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
    [CrossRef]
  12. K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985).
    [CrossRef]
  13. J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques," Macromolecules 20, 2241-2250 (1987).
    [CrossRef]
  14. D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
    [CrossRef]
  15. D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
    [CrossRef]
  16. D. Levy, "Photochromic sol-gel materials," Chem. Mater. 9, 2666-2670 (1997).
    [CrossRef]
  17. A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard, and T. V. Galstian, "Photochromic behavior of spiropyran in polymer matrices," Appl. Opt. 40, 1180-1186 (2001).
    [CrossRef]
  18. M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
    [CrossRef]
  19. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
    [CrossRef] [PubMed]
  20. I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002).
    [CrossRef]
  21. N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
    [CrossRef]
  22. M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994).
    [CrossRef]
  23. K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
    [CrossRef]
  24. I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
    [CrossRef]
  25. M. Saito, A. Honda, and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics," J. Lightwave Technol. 21, 2255-2261 (2003).
    [CrossRef]
  26. M. Saito, M. Shibasaki, S. Nakamura, and M. Miyagi, "Optical waveguides fabricated in anodic alumina films," Opt. Lett. 19, 710-713 (1994).
    [CrossRef] [PubMed]
  27. D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
    [CrossRef]

2004 (1)

I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
[CrossRef]

2003 (2)

M. Saito, A. Honda, and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics," J. Lightwave Technol. 21, 2255-2261 (2003).
[CrossRef]

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

2002 (1)

I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002).
[CrossRef]

2001 (2)

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard, and T. V. Galstian, "Photochromic behavior of spiropyran in polymer matrices," Appl. Opt. 40, 1180-1186 (2001).
[CrossRef]

2000 (1)

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

1998 (2)

K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye," J. Appl. Phys. 83, 2894-2900 (1998).
[CrossRef]

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

1997 (2)

D. Levy and F. D. Monte, "Photochromic doped solgel materials for fiberoptic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
[CrossRef]

D. Levy, "Photochromic sol-gel materials," Chem. Mater. 9, 2666-2670 (1997).
[CrossRef]

1995 (1)

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

1994 (3)

M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994).
[CrossRef]

M. Saito, M. Shibasaki, S. Nakamura, and M. Miyagi, "Optical waveguides fabricated in anodic alumina films," Opt. Lett. 19, 710-713 (1994).
[CrossRef] [PubMed]

N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes," Jpn. J. Appl. Phys. Part 1 33, 1550-1553 (1994).
[CrossRef]

1993 (2)

1992 (1)

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

1990 (1)

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

1989 (3)

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

1988 (1)

D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
[CrossRef]

1987 (1)

J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques," Macromolecules 20, 2241-2250 (1987).
[CrossRef]

1985 (1)

K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985).
[CrossRef]

1980 (1)

M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
[CrossRef]

Aoi, Y.

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

Avnir, D.

D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
[CrossRef]

Aye, T. M.

Biteau, J.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Boilot, J.-P.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Bosshard, Ch.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Boudreault, F.

Brown, G. H.

G. H. Brown, Photochromism (Wiley, 1971).

Buchal, Ch.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

Chaput, F.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Darracq, B.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Diederich, F.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Dunn, B.

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

Einhorn, S.

D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

Franke, H.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

Fujita, M.

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Galstian, T. V.

Garcia, N.

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

Gobbi, L.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Gubler, U.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Günter, P.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Honda, A.

Horie, K.

K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985).
[CrossRef]

Irie, M.

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes," Jpn. J. Appl. Phys. Part 1 33, 1550-1553 (1994).
[CrossRef]

Irmscher, R.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

Jäger, M

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Kamiyama, T.

Kaska, W.

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

Kirihara, M.

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

Kryszewski, M.

M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
[CrossRef]

Kudoh, S.

I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
[CrossRef]

Kulisch, J. R.

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

Lahlil, K.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Lecomte, S.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Lehn, J.-M.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Lessard, R. A.

Levitsky, I. A.

I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002).
[CrossRef]

Levy, D.

D. Levy, "Photochromic sol-gel materials," Chem. Mater. 9, 2666-2670 (1997).
[CrossRef]

D. Levy and F. D. Monte, "Photochromic doped solgel materials for fiberoptic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
[CrossRef]

D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
[CrossRef]

Lévy, Y.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Liang, J.

I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002).
[CrossRef]

Marois, C.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Masuda, H.

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Mita, I.

K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985).
[CrossRef]

Miura, I.

I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
[CrossRef]

Miyagi, M.

M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994).
[CrossRef]

M. Saito, M. Shibasaki, S. Nakamura, and M. Miyagi, "Optical waveguides fabricated in anodic alumina films," Opt. Lett. 19, 710-713 (1994).
[CrossRef] [PubMed]

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

Monte, F. D.

D. Levy and F. D. Monte, "Photochromic doped solgel materials for fiberoptic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
[CrossRef]

Montemezzani, G.

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Nadolski, B.

M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
[CrossRef]

Nagamura, T.

K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye," J. Appl. Phys. 83, 2894-2900 (1998).
[CrossRef]

Nakamura, S.

M. Saito, M. Shibasaki, S. Nakamura, and M. Miyagi, "Optical waveguides fabricated in anodic alumina films," Opt. Lett. 19, 710-713 (1994).
[CrossRef] [PubMed]

M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994).
[CrossRef]

Nakata, M.

I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
[CrossRef]

North, A. M.

M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
[CrossRef]

Novinson, T.

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

Okada, Y.

I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
[CrossRef]

Okamoto, T.

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Pethrick, R. A.

M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
[CrossRef]

Ponizowskaya, E. V.

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

Pons, A.

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

Pouxviel, J.-C.

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

Preston, D.

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Ritcey, A. M.

Roberge, M.

Saito, M.

M. Saito, A. Honda, and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics," J. Lightwave Technol. 21, 2255-2261 (2003).
[CrossRef]

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994).
[CrossRef]

M. Saito, M. Shibasaki, S. Nakamura, and M. Miyagi, "Optical waveguides fabricated in anodic alumina films," Opt. Lett. 19, 710-713 (1994).
[CrossRef] [PubMed]

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

Sasaki, K.

K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye," J. Appl. Phys. 83, 2894-2900 (1998).
[CrossRef]

Shibasaki, M.

Taniguchi, T.

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

Tanio, N.

N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes," Jpn. J. Appl. Phys. Part 1 33, 1550-1553 (1994).
[CrossRef]

Tork, A.

Torkelson, J. M.

J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques," Macromolecules 20, 2241-2250 (1987).
[CrossRef]

Tsivgoulis, G. M.

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

Tsukamoto, M.

K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985).
[CrossRef]

Uchida, K.

M. Saito, A. Honda, and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics," J. Lightwave Technol. 21, 2255-2261 (2003).
[CrossRef]

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

Victor, J. G.

J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques," Macromolecules 20, 2241-2250 (1987).
[CrossRef]

Xiao, J.

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

Xu, J. M.

I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002).
[CrossRef]

Yacoubian, A.

Yamaguchi, I.

Zhu, H.

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

Zink, J. I.

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, "Micropolarizer made of the anodic alumina film," Appl. Phys. Lett. 55, 607-609 (1989).
[CrossRef]

I. A. Levitsky, J. Liang, and J. M. Xu, "Highly ordered arrays of organic-inorganic nanophotonic composites," Appl. Phys. Lett. 81, 1696-1698 (2002).
[CrossRef]

N. Garcia, E. V. Ponizowskaya, H. Zhu, J. Xiao, and A. Pons, "Wide photonic bandgaps at the visible in metallic nanowire arrays embedded in a dielectric matrix," Appl. Phys. Lett. 82, 3147-3149 (2003).
[CrossRef]

S. Lecomte, U. Gubler, M Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules," Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

Chem. Lett. (1)

K. Uchida, M. Fujita, Y. Aoi, M. Saito, and M. Irie, "Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes," Chem. Lett. 366-367 (2001).
[CrossRef]

Chem. Mater. (2)

J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois, and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials," Chem. Mater. 10, 1945-1950 (1998).
[CrossRef]

D. Levy, "Photochromic sol-gel materials," Chem. Mater. 9, 2666-2670 (1997).
[CrossRef]

Eur. Polym. J. (1)

K. Horie, M. Tsukamoto, and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film," Eur. Polym. J. 21, 805-810 (1985).
[CrossRef]

J. Appl. Phys. (3)

J. R. Kulisch, H. Franke, R. Irmscher, and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides," J. Appl. Phys. 71, 3123-3126 (1992).
[CrossRef]

K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye," J. Appl. Phys. 83, 2894-2900 (1998).
[CrossRef]

M. Saito, S. Nakamura, and M. Miyagi, "Light scattering by liquid crystals in columnar micropores," J. Appl. Phys. 75, 4744-4746 (1994).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. Kryszewski, B. Nadolski, A. M. North, and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): ring closure," J. Chem. Soc. Faraday Trans. 2, 76, 351-368 (1980).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

D. Levy, S. Einhorn, and D. Avnir, "Applications of the solgel process for the preparation of photochromic information-recording materials: synthesis, properties, mechanisms," J. Non-Cryst. Solids 113, 137-145 (1989).
[CrossRef]

J. Phys. Chem. (2)

D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans," J. Phys. Chem. 92, 4734-4738 (1988).
[CrossRef]

D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn, and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels," J. Phys. Chem. 94, 4167-4172 (1990).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

D. Levy and F. D. Monte, "Photochromic doped solgel materials for fiberoptic devices," J. Sol-Gel Sci. Technol. 8, 931-935 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

I. Miura, Y. Okada, S. Kudoh, and M. Nakata, "Organic electroluminescence in porous alumina," Jpn. J. Appl. Phys. Part 1 43, 7552-7553 (2004).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes," Jpn. J. Appl. Phys. Part 1 33, 1550-1553 (1994).
[CrossRef]

Macromolecules (1)

J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques," Macromolecules 20, 2241-2250 (1987).
[CrossRef]

Opt. Lett. (2)

Science (2)

H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory," Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Other (1)

G. H. Brown, Photochromism (Wiley, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) (a) SEM photograph of the anodic alumina film. (b) Sample structure and optical paths of the probe beam. (c) Photograph of the sample that was prepared with the alumina film and the benzene solution of spirobenzopyran. Only the left side of the sample was exposed to UV light. The unexposed side of the sample (right) was transparent. In the exposed side, the solution exhibited a red color inside the alumina film and a blue color outside the film.

Fig. 2
Fig. 2

Transmission spectra of the benzene solution of spirobenzopyran (a) in free space or (b) in alumina nanoholes. Numerals beside the curves indicate the times after the start of UV irradiation. (c) Temporal change in transmittances (600 or 520   nm wavelength) of the solution during coloration (UV irradiation) and decoloration (thermal relaxation) processes. As the arrows ( , ) indicate, the upper and lower curves were drawn with reference to the upper and lower axes, respectively.

Fig. 3
Fig. 3

(a) Transmission spectra of the 2-propanol solution of spirobenzopyran in free space (thin curves) or in alumina nanoholes (thick curves). Numerals beside the curves indicate the times after the start of UV irradiation. (b) Temporal change in transmittances ( 550   nm wavelength) of the solution during coloration (UV irradiation) and decoloration (thermal relaxation) processes.

Fig. 4
Fig. 4

(a) Absorption spectra of the benzene solution in alumina nanoholes. Numerals beside the spectra indicate periods after sample preparation. (b) Temporal change in the time constants of the coloration and decoloration processes.

Fig. 5
Fig. 5

Absorption spectra of the 2-propanol solution in alumina nanoholes. Numerals beside the spectra indicate periods after sample preparation.

Fig. 6
Fig. 6

Deconvolution of the absorption spectra of (a) the benzene solution and (b) the 2-propanol solution in free space. The black curve shows the measured spectrum. The thin gray curves show the Gaussian curves that are centered at 480, 550, or 600   nm with a FWHM of 100, 90, or 80   nm . The thick gray curve shows the sum of these three Gaussian curves.

Fig. 7
Fig. 7

Deconvolution of the absorption spectra of the benzene solution in alumina nanoholes. The black curve shows the measured spectrum. The thick gray curve shows the sum of the three Gaussian curves (thin curves) that are centered at 480, 550, or 600   nm with a FWHM of 100, 90, or 80   nm . The periods after sample preparation were (a) 0, (b) 5, or (c) 10 days.

Fig. 8
Fig. 8

Deconvolution of the absorption spectra of the 2-propanol solution in alumina nanoholes. The black curve shows the measured spectrum. The thick gray curve shows the sum of the two Gaussian curves (thin curves) that are centered at 480 or 550   nm with a FWHM of 100 or 90   nm . The periods after sample preparation were (a) 0 or (b) 3 days.

Metrics