Abstract

We report bright-field and dark-field surface-plasmon imaging using a modified solid immersion lens and a commercial objective of moderate NA in the epi configuration. The contrast and resolution are extremely good, giving well-resolved images of protein monolayers both in air and in water. We also describe a two-part solid immersion lens that allows the sample to be moved without degrading the image quality in any observable way. The merits of the two-part lens are discussed and compared to commercially available microscope objectives. Finally, we introduce a simple Green's function model that illustrates the key features of both bright-field and dark-field surface-plasmon imaging.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Malmqvist, "Biacore: an affinity biosensor system for characterisation of biomolecular interactions," Biochem. Soc. Trans. 27, 335-340 (1999).
    [PubMed]
  2. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
    [CrossRef]
  3. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
    [CrossRef]
  4. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  5. J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
    [CrossRef]
  6. H. L. Bertoni and T. Tamir, "Unified theory of Rayleigh angle phenomena for acoustic beams at liquid-solid interfaces," Appl. Phys. 2, 157-172 (1973).
    [CrossRef]
  7. M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
    [CrossRef]
  8. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
    [CrossRef]
  9. J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
    [CrossRef] [PubMed]

2005

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

2004

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

2000

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

1999

M. Malmqvist, "Biacore: an affinity biosensor system for characterisation of biomolecular interactions," Biochem. Soc. Trans. 27, 335-340 (1999).
[PubMed]

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

1990

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

1985

M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
[CrossRef]

1973

H. L. Bertoni and T. Tamir, "Unified theory of Rayleigh angle phenomena for acoustic beams at liquid-solid interfaces," Appl. Phys. 2, 157-172 (1973).
[CrossRef]

Beloglazov, A. A.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Bertoni, H. L.

M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
[CrossRef]

H. L. Bertoni and T. Tamir, "Unified theory of Rayleigh angle phenomena for acoustic beams at liquid-solid interfaces," Appl. Phys. 2, 157-172 (1973).
[CrossRef]

Briggs, G. A. D.

M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
[CrossRef]

Burton, N. J.

M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
[CrossRef]

Goh, J. Y. L.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Grigorenko, N.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Kuhne, C.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

Liu, S. G.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Malmqvist, M.

M. Malmqvist, "Biacore: an affinity biosensor system for characterisation of biomolecular interactions," Biochem. Soc. Trans. 27, 335-340 (1999).
[PubMed]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

Nikitin, P. I.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

O'Shea, P.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

Pitter, M. C.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Salzer, R.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

See, C. W.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Somekh, M. G.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
[CrossRef]

Steiner, G.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Tamir, T.

H. L. Bertoni and T. Tamir, "Unified theory of Rayleigh angle phenomena for acoustic beams at liquid-solid interfaces," Appl. Phys. 2, 157-172 (1973).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

Vere, K. A.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Appl. Phys.

H. L. Bertoni and T. Tamir, "Unified theory of Rayleigh angle phenomena for acoustic beams at liquid-solid interfaces," Appl. Phys. 2, 157-172 (1973).
[CrossRef]

Appl. Phys. Lett.

S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical-data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," Appl. Phys. Lett. 85, 5451-5453 (2004).
[CrossRef]

Biochem. Soc. Trans.

M. Malmqvist, "Biacore: an affinity biosensor system for characterisation of biomolecular interactions," Biochem. Soc. Trans. 27, 335-340 (1999).
[PubMed]

J. Microsc.

J. Y. L. Goh, M. G. Somekh, C. W. See, M. C. Pitter, K. A. Vere, and P. O'Shea, "Two-photon fluorescence surface wave microscopy," J. Microsc. 220, 168-175 (2005).
[CrossRef] [PubMed]

Opt. Commun.

N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, "Dark-field surface plasmon resonance microscopy," Opt. Commun. 174, 151-155 (2000).
[CrossRef]

Proc. R. Soc. London Ser. A

M. G. Somekh, H. L. Bertoni, G. A. D. Briggs, and N. J. Burton, "A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope," Proc. R. Soc. London Ser. A 401, 29-51 (1985).
[CrossRef]

Rev. Sci. Instrum.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, "Resolution in surface plasmon microscopy," Rev. Sci. Instrum. 65, 2829-2836 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic showing bright-field and dark-field imaging configurations in a Kretchmann-based SP microscope.

Fig. 2
Fig. 2

Schematic of a solid immersion lens based system and the SIL. (a) System setup. (b) Diagram of a two-piece ball showing the ray paths for aplanatic configuration.

Fig. 3
Fig. 3

BFP distribution obtained from plane gold sample using the split ball with air backing; the incident light is horizontally polarized. (a) Experimental distribution with the split ball. (b) Simulated distribution (NA of 1.65 used for simulation).

Fig. 4
Fig. 4

Different imaging modalities used to image 5   nm protein stripes on a gold surface. (a) Bright-field SP image of the protein grating. Image width = 90   μ m . (b) Dark-field SP image of the protein grating. Image width = 90   μ m . (c) Conventional bright-field image of the protein grating. Image width = 90   μ m . (d) Differential phase image of the protein grating. Image width = 70   μ m . (e) AFM image of the protein grating. Image width = 35   μ m . Images (c), (d), and (e) were obtained with the protein facing the imaging head, whereas the SP images were taken “through” the gold layer.

Fig. 5
Fig. 5

BFP distributions and images of the protein grating (5 μm a in width and 5   nm in thickness) in air and water conditions. (a) BFP distribution of the protein stripes in air backing; the circle indicates a NA of 1.05. (b) Corresponding image of protein stripes (image width of 70 μ m ). (c) BFP distribution with aqueous backing, circles indicate a NA of 1.44 (dashed lines) and a NA of 1.65 (dashed-dot lines). (d) Corresponding image of protein stripes (image width 80 μ m ).

Fig. 6
Fig. 6

Schematic of the simplified Green's function model. (a) Plane wavefronts creating a line of point sources. (b) Point source generated in the sample and scattered at discontinuity.

Fig. 7
Fig. 7

Reflection coefficients produced with an approximate reflection coefficient: solid curve, k a = 0.006 k γ = k c ; dotted curve, k a = 0.006 k γ = 2 k c ; dashed curve, k a = 0.006 k γ = 0.5 k c . (a) Amplitude and (b) phase of reflection coefficient.

Fig. 8
Fig. 8

Surface wave response across an interface on and off resonance for strong and weak coupling for a single incident angle k x . One unit of wavelength is the surface wave wavelength in the faster medium. (a) Weak coupling corresponding to k a = 0.0055 k γ , k c = 0.0065 k γ . Solid curve; left-hand medium k γ = 1.01 k x , right-hand medium k γ = k x . Dashed curve, left-hand medium k γ = k x , right-hand medium k γ = 1.01 k x . (b) Strong coupling corresponding to k a = 0.011 k γ , k c = 0.013 k γ . Solid curve, left-hand medium k γ = 1.01 k x , right-hand medium k γ = k x . Dashed curve, left-hand medium k γ = k x , right-hand medium k γ = 1.01 k x .

Fig. 9
Fig. 9

Experimental SP images of the protein grating. The grating structure is parallel and perpendicular to the dominant SP propagation direction. (Image width of 90 μ m ). (a) Dominant SP direction parallel to the grating. (b) Dominant SP direction perpendicular to the grating.

Fig. 10
Fig. 10

Dark-field surface wave response across an interface on and off resonance for strong and weak coupling for a single incident angle k x . One unit of wavelength is the surface wave wavelength in the faster medium. Solid curve, weak coupling corresponding to k a = 0.0055 k γ , k c = 0.0065 k γ , left-hand medium k γ = 1.01 k x , right-hand medium k γ = k x . Dashed curve, weak coupling left-hand medium k γ = k x , right-hand medium k γ = 1.01 k x . Dotted curve, strong coupling, k a = 0.011 k γ , k c = 0.013 k γ , left-hand medium k γ = 1.01 k x , right-hand medium k γ = k x .

Tables (1)

Tables Icon

Table 1 Summary of SILs and the Principal Aberrations in Different SIL Configurations

Equations (93)

Equations on this page are rendered with MathJax. Learn more.

n s
n s
n = 1.995
0.6328 μ m
2 μ m
1.05
1.44
100 ×
1.65   NA
n 2
0.6   mm
5   nm
5 μ m
n 0
n 0
k x
( i k x x )
x 0
k p
k p = k γ + i ( k c + k a ) .
k γ
k c
n 0
k a
x 0
u l ( x 0 )
u l ( x 0 ) = 2 k c x 0 exp ( i k x x ) exp   i k p ( x 0 x ) d x .
x 0
x 0
2 k c
u p ( x 0 ) = 2 k c   exp ( i k x x 0 ) r ( k x , k p ) ,
r ( k x , k p ) = i ( k p k x ) = ( k c + k a ) + i ( k γ k x ) ( k c + k a ) 2 + ( k γ k x ) 2 .
k γ = k x
k p
k γ
k x
R ( k x )
R ( k x ) = 1 + 2 k c r ( k x , k p ) .
k c
k a
k c / k a
k a
k c
k p 1
k p 2
( i k x x )
x = 0
u l ( x 0 ) = 2 k c 1   exp   i k x x 0 H ( x ) r ( k x , k p 1 ) + 2 [ 1 H ( x ) ] × k c 1 k c 2 t 12   exp   i k p 2 x 0 r ( k x , k p 1 ) + 4 i k c 2 [ 1 H ( x ) ] exp   i ( k x + k p 2 ) × x 0 2 sin ( k x k 2 ) x 0 2 r ( k x , k p 2 ) + 2 k c 1 r 12 r ( k x , k p 1 ) exp i k p 1 x 0 ,
H ( x ) = 1   for   x 0
t 12
r 12
t 12 = 2 k p 1 k p 2 + k p 1 , r 12 = k p 2 k p 1 k p 2 + k p 1 .
k c
k a
5 μ m
30   ms
5   nm
90   μ m
90   μ m
90   μ m
70   μ m
35   μ m
5   nm
70 μ m
80 μ m
k a = 0.006 k γ = k c
k a = 0.006 k γ = 2 k c
k a = 0.006 k γ = 0.5 k c
k x
k a = 0.0055 k γ
k c = 0.0065 k γ
k γ = 1.01 k x
k γ = k x
k γ = k x
k γ = 1.01 k x
k a = 0.011 k γ
k c = 0.013 k γ
k γ = 1.01 k x
k γ = k x
k γ = k x
k γ = 1.01 k x
90 μ m
k x
k a = 0.0055 k γ
k c = 0.0065 k γ
k γ = 1.01 k x
k γ = k x
k γ = k x
k γ = 1.01 k x
k a = 0.011 k γ
k c = 0.013 k γ
k γ = 1.01 k x
k γ = k x

Metrics