Abstract

We demonstrate, for what is believed to be the first time, the design of diamondlike photonic crystals made by holographic lithography based on five-beam interference. All five beams are launched from the same half-space, and the exposure can easily be realized by a single diffractive optical element. The photonic structure can be constructed through the translation of the interference pattern controlled by the phase shift of laser beams. The proposed holographic lithography is capable of creating series photonic crystals with large photonic bandgaps by adjusting the phase and the wave vector of interfering beams.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature 386, 143-147 (1997).
    [Crossref]
  4. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [Crossref] [PubMed]
  5. Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
    [Crossref]
  6. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three- dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
    [Crossref]
  7. Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102 (2005).
    [Crossref]
  8. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic bandgaps and holography," J. Appl. Phys. 82, 60-64 (1997).
    [Crossref]
  9. O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905 (2004).
    [Crossref] [PubMed]
  10. T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
    [Crossref]
  11. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003).
    [Crossref]
  12. X. Ao and S. He, "Two-stage design method for realization of photonic bandgap structures with desired symmetries by interference lithography," Opt. Express 12, 978-983 (2004).
    [Crossref] [PubMed]
  13. C. K. Ullal, M. Maldovan, M. Wohlgemuth, C. A. White, S. Yang, and E. L. Thomas, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A 20, 948-954 (2003).
    [Crossref]
  14. J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
    [Crossref]
  15. J. H. Moon, S. Yang, D. J. Pine, and S.-M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13, 9841-9846 (2005).
    [Crossref] [PubMed]
  16. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
    [Crossref]
  17. H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
    [Crossref]
  18. N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
    [Crossref]
  19. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [Crossref] [PubMed]
  20. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
    [Crossref]
  21. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express 8, 173-190 (2001).
    [Crossref] [PubMed]
  22. J.-H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
    [Crossref]

2006 (2)

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

2005 (4)

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three- dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[Crossref]

Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102 (2005).
[Crossref]

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[Crossref]

J. H. Moon, S. Yang, D. J. Pine, and S.-M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13, 9841-9846 (2005).
[Crossref] [PubMed]

2004 (3)

J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[Crossref]

X. Ao and S. He, "Two-stage design method for realization of photonic bandgap structures with desired symmetries by interference lithography," Opt. Express 12, 978-983 (2004).
[Crossref] [PubMed]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905 (2004).
[Crossref] [PubMed]

2003 (4)

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

C. K. Ullal, M. Maldovan, M. Wohlgemuth, C. A. White, S. Yang, and E. L. Thomas, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A 20, 948-954 (2003).
[Crossref]

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003).
[Crossref]

J.-H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[Crossref]

2002 (1)

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

2001 (2)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express 8, 173-190 (2001).
[Crossref] [PubMed]

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature 386, 143-147 (1997).
[Crossref]

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic bandgaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[Crossref]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

Abolghasemi, E. L.

Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102 (2005).
[Crossref]

Ao, X.

Ashmore, J. P.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Baumberg, J. J.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic bandgaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[Crossref]

Blanco, A.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Busch, K.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Chan, T. Y. M.

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[Crossref]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905 (2004).
[Crossref] [PubMed]

Chang, W.

J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[Crossref]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic bandgaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[Crossref]

Curtis, E. A.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Darmawikarta, K.

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three- dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[Crossref]

Denning, R. G.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

Deubel, M.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Enkrich, C.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Eriksson, S.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature 386, 143-147 (1997).
[Crossref]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic bandgaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[Crossref]

Gollasch, C.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

Hatton, B.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

He, S.

Herman, P. R.

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three- dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[Crossref]

Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102 (2005).
[Crossref]

Hermatschweiler, M.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Hinds, E. A.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express 8, 173-190 (2001).
[Crossref] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature 386, 143-147 (1997).
[Crossref]

John, S.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[Crossref]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905 (2004).
[Crossref] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[Crossref]

Klein-Wiele, J.-H.

J.-H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[Crossref]

Koch, W.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[Crossref]

Kraft, M.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Lin, Y.

Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102 (2005).
[Crossref]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three- dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[Crossref]

Maldovan, M.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[Crossref]

Meisel, D. C.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Miguez, H.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

Miklyaev, Yu. V.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[Crossref]

Moktadir, Z.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Moon, J. H.

J. H. Moon, S. Yang, D. J. Pine, and S.-M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13, 9841-9846 (2005).
[Crossref] [PubMed]

J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[Crossref]

Ozin, G. A.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

Perez-Willard, F.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Perovic, D.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

Pine, D. J.

J. H. Moon, S. Yang, D. J. Pine, and S.-M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13, 9841-9846 (2005).
[Crossref] [PubMed]

J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[Crossref]

Prakash, G. Vijaya

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Ramirez-Martinez, F.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Sharp, D. N.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

Simon, P.

J.-H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Tereault, N.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Tetreault, N.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

Thomas, E. L.

Toader, O.

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[Crossref]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905 (2004).
[Crossref] [PubMed]

Trupke, M.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

Turberfield, A. J.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

Ullal, C. K.

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature 386, 143-147 (1997).
[Crossref]

von Freymann, G.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Wegener, M.

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

White, C. A.

Wohlgemuth, M.

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

Yang, S.

Yang, S. M.

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

Yang, S.-M.

J. H. Moon, S. Yang, D. J. Pine, and S.-M. Yang, "Translation of interference pattern by phase shift for diamond photonic crystals," Opt. Express 13, 9841-9846 (2005).
[Crossref] [PubMed]

J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[Crossref]

Adv. Mater. (1)

N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006).
[Crossref]

Appl. Phys. Lett. (6)

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. Vijaya Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[Crossref]

J.-H. Klein-Wiele and P. Simon, "Fabrication of periodic nanostructures by phase-controlled multiple-beam interference," Appl. Phys. Lett. 83, 4707-4709 (2003).
[Crossref]

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[Crossref]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three- dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[Crossref]

J. H. Moon, S.-M. Yang, D. J. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[Crossref]

Chem. Commun. (1)

H. Miguez, N. Tetreault, B. Hatton, S. M. Yang, D. Perovic, and G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by- layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002).
[Crossref]

J. Appl. Phys. (2)

Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102 (2005).
[Crossref]

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic bandgaps and holography," J. Appl. Phys. 82, 60-64 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature 386, 143-147 (1997).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102 (2003).
[Crossref]

Phys. Rev. E (1)

T. Y. M. Chan, O. Toader, and S. John, "Photonic bandgap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005).
[Crossref]

Phys. Rev. Lett. (4)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[Crossref] [PubMed]

O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905 (2004).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online) (a) Beam arrangement through a top-cut prism for the generation of five-beam interference pattern. (b) Five-beam laser interference pattern. The interference pattern is displaced along the arrow to form a diamondlike structure. (c) Cross section of the interference pattern in the xz plane. The color bar indicates the high- and low-intensity parts. (d) Diamondlike structure formed through double exposures.

Fig. 2
Fig. 2

(Color online) Isointensity surface of the five-beam interference pattern translated through a control of phase shift.

Fig. 3
Fig. 3

(a) Photonic band structure for a diamondlike fct photonic crystal formed through double exposures to the five-beam interference pattern with the interfering angle θ = 58 ° . The refractive index of silicon is set to be 3.45 and the silicon volume fraction is 23 % . The position of the high symmetry points together with the irreducible Brillouin zone are shown in the inset. (b) Photonic bandgap sizes versus the translation of the interference pattern controlled through the phase shift. (c) Optimum photonic bandgap sizes as a function of the laser beam interfering angle θ.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E i ( r , t ) = E i cos ( k i · r ω t + δ i ) ,
E 1 ( r , t ) = E 1 cos [ ( k cos θ ) z - ( k sin θ ) x ω t + δ 1 ] ,
E 2 ( r , t ) = E 2 cos [ ( k cos θ ) z + ( k sin θ ) x ω t + δ 2 ] ,
E 3 ( r , t ) = E 3 cos [ ( k cos θ ) z ( k sin θ ) y ω t + δ 3 ] ,
E 4 ( r , t ) = E 4 cos [ ( k cos θ ) z + ( k sin θ ) y ω t + δ 4 ] ,
E 5 ( r , t ) = E 5 cos ( k z ω t + δ 5 ) .
I = < i = 1 5 E i 2 ( r , t ) > + i < j 5 E i E j cos [ ( k i - k j ) r + ( δ i - δ j ) ]
= ( 1 / 2 ) ( E 1 2 + E 2 2 + E 3 2 + E 4 2 + E 5 2 ) + E 1 · E 2 cos [ ( 2 k sin θ ) x + ( δ 1 δ 2 ) ] + E 1 · E 3 cos [ ( k sin θ ) x + ( k sin θ ) y + ( δ 1 δ 3 ) ] + E 1 · E 4 cos [ ( k sin θ ) x ( k sin θ ) y + ( δ 1 δ 4 ) ] + E 1 · E 5 cos [ ( k cos θ k ) z ( k sin θ ) x + ( δ 1 δ 5 ) ] + E 2 · E 3 cos [ ( k sin θ ) x + ( k sin θ ) y + ( δ 2 δ 3 ) ] + E 2 · E 4 cos [ ( k sin θ ) x ( k sin θ ) y + ( δ 2 δ 4 ) ] + E 2 · E 5 cos [ ( k cos θ k ) z + ( k sin θ ) x + ( δ 2 δ 5 ) ] + E 3 · E 4 cos [ ( 2 k sin θ ) y + ( δ 3 δ 4 ) ] + E 3 · E 5 cos [ ( k cos θ k ) z ( k sin θ ) y + ( δ 3 δ 5 ) ] + E 4 · E 5 cos [ ( k cos θ k ) z + ( k sin θ ) y + ( δ 4 δ 5 ) ] .
I int = E i · E j cos [ ( k i k j ) · r + ( ρ i ρ j ) + ( δ i δ j ) ] .
I int = E i · E j cos [ ( k i k j ) · ( r + r s ) + ( δ i δ j ) ] .
( k i k j ) · r s = ρ i ρ j .
I = ( 1 / 2 ) ( b 11 + b 22 + b 33 + b 44 + b 55 ) + b 12 cos [ ( 4 π / L ) x + ( ρ 1 ρ 2 ) + ( δ 1 δ 2 ) ] + b 13 cos [ ( 2 π / L ) x + ( 2 π / L ) y + ( ρ 1 ρ 3 ) + ( δ 1 δ 3 ) ] + b 14 cos [ ( 2 π / L ) x ( 2 π / L ) y + ( ρ 1 ρ 4 ) + ( δ 1 δ 4 ) ] + b 15 cos [ ( 2 π / c ) z - ( 2 π / L ) x + ( ρ 1 ρ 5 ) + ( δ 1 δ 5 ) ] + b 23 cos [ ( 2 π / L ) x + ( 2 π / L ) y + ( ρ 2 ρ 3 ) + ( δ 2 δ 3 ) ] + b 24 cos [ ( 2 π / L ) x ( 2 π / L ) y + ( ρ 2 ρ 4 ) + ( δ 2 δ 4 ) ] + b 25 cos [ ( 2 π / c ) z + ( 2 π / L ) x + ( ρ 2 ρ 5 ) + ( δ 2 δ 5 ) ] + b 34 cos [ ( 4 π / L ) y + ( ρ 3 ρ 4 ) + ( δ 3 δ 4 ) ] + b 35 cos [ ( 2 π / c ) z ( 2 π / L ) y + ( ρ 3 ρ 5 ) + ( δ 3 δ 5 ) ] + b 45 cos [ ( 2 π / c ) z + ( 2 π / L ) y + ( ρ 4 ρ 5 ) + ( δ 4 δ 5 ) ] .
I = ( 1 / 2 ) ( b 11 + b 22 + b 33 + b 44 + b 55 ) + b 12 cos [ ( 4 π / L ) x + ( δ 1 δ 2 ) ] b 13 cos [ ( 2 π / L ) x + ( 2 π / L ) y + ( δ 1 δ 3 ) ] b 14 cos [ ( 2 π / L ) x ( 2 π / L ) y + ( δ 1 δ 4 ) ] + b 15 sin [ ( 2 π / c ) z ( 2 π / L ) x + ( δ 1 δ 5 ) ] b 23 cos [ ( 2 π / L ) x + ( 2 π / L ) y + ( δ 2 δ 3 ) ] b 24 cos [ ( 2 π / L ) x ( 2 π / L ) y + ( δ 2 δ 4 ) ] + b 25 sin [ ( 2 π / c ) z + ( 2 π / L ) x + ( δ 2 δ 5 ) ] + b 34 cos [ ( 4 π / L ) y + ( δ 3 δ 4 ) ] b 35 sin [ ( 2 π / c ) z ( 2 π / L ) y + ( δ 3 δ 5 ) ] b 45 sin [ ( 2 π / c ) z + ( 2 π / L ) y + ( δ 4 δ 5 ) ] .

Metrics