Abstract

The asymmetric two-beam coupling technique has been employed to measure the photorefractivity of thin films of polymer blends containing 2,5-dimethyl-4-(p-nitrophenylazo)anisole as the nonlinear optical component. Poly-(1-vinylindole) and poly-(2,3-dimethyl-1-vinylindole) were the photoconductive polymer counterparts. The values of the photorefractivity are reported. It appears that they are comparable with those of similar blends based on the well-known poly-(9-vinylcarbazole) (PVK), here considered as a reference standard. Careful differential scanning calorimetry analyses have been accomplished on the different blends taken into account to rationalize the significantly longer shelf lifetime of the indolyl-based films with respect to the PVK-based blends.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).
  2. F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
    [CrossRef]
  3. C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
    [CrossRef]
  4. R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).
  5. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
    [CrossRef]
  6. W. E. Moerner and S. Silence, "Polymeric photorefractive materials," Chem. Rev. 94, 127-155 (1994).
    [CrossRef]
  7. F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002).
    [CrossRef] [PubMed]
  8. K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
    [CrossRef]
  9. R. Bittner, C. Bräuchle, and K. Meerholz, "Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers," Appl. Opt. 37, 2843-2851 (1998).
    [CrossRef]
  10. R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
    [CrossRef]
  11. H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
    [CrossRef]
  12. R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).
  13. E. Gipstein and W. A. Hewett, "Polymerization and copolymerization of N-vinylindole and N-vinylmethylindoles," Macromolecules 2, 82-85 (1969).
    [CrossRef]
  14. A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979).
    [CrossRef]
  15. D. J. Binks, D. J. K. Khand, and D. P. West, "Reorientation of chromophores in dispersive photorefractive polymers," J. Opt. Soc. Am. B 18, 308-312 (2001).
    [CrossRef]
  16. D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), pp. 535-583.
  17. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320-330 (1994).
    [CrossRef]
  18. Y. Wang and A. Suna, "Fullerenes in photoconductive polymers. Charge generation and charge transport," J. Phys. Chem. B 101, 5627-5638 (1997).
    [CrossRef]
  19. R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995).
    [CrossRef]
  20. R. A. Marcus and P. J. Siders, "Theory of highly exothermic electron transfer reactions," J. Phys. Chem. 86, 622-630 (1982).
    [CrossRef]
  21. H. Bässler, "Charge-transport in random organic photoconductors," Adv. Mater. 5, 662-665 (1993).
    [CrossRef]
  22. D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984).
    [CrossRef]
  23. H. Bässler, "Charge transport in disordered organic photoconductors a Monte Carlo simulation study," Phys. Status Solidi B 175, 15-56 (1993).
    [CrossRef]
  24. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
    [CrossRef]
  25. D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
    [CrossRef]
  26. O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
    [CrossRef] [PubMed]
  27. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
    [CrossRef]
  28. J. S. Schildkraut and A. V. Buettner, "Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers," J. Appl. Phys. 72, 1888-1893 (1992).
    [CrossRef]
  29. O. Ostroverkhova and K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002).
    [CrossRef]
  30. O. Ostroverkhova and W. E. Moerner, "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004).
    [CrossRef] [PubMed]
  31. C. C. Teng and H. C. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 29, 1734-1736 (1990).
    [CrossRef]
  32. J. S. Schildkraut, "Determination of the electro-optical coefficient of a poled polymer film," Appl. Opt. 29, 2839-2841 (1990).
    [CrossRef] [PubMed]
  33. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996).
    [CrossRef]

2006

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

2004

O. Ostroverkhova and W. E. Moerner, "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

2003

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
[CrossRef] [PubMed]

2002

F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002).
[CrossRef] [PubMed]

O. Ostroverkhova and K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002).
[CrossRef]

2001

D. J. Binks, D. J. K. Khand, and D. P. West, "Reorientation of chromophores in dispersive photorefractive polymers," J. Opt. Soc. Am. B 18, 308-312 (2001).
[CrossRef]

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

2000

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
[CrossRef]

1999

R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
[CrossRef]

1998

1997

D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), pp. 535-583.

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Y. Wang and A. Suna, "Fullerenes in photoconductive polymers. Charge generation and charge transport," J. Phys. Chem. B 101, 5627-5638 (1997).
[CrossRef]

1996

1995

R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995).
[CrossRef]

1994

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[CrossRef]

W. E. Moerner and S. Silence, "Polymeric photorefractive materials," Chem. Rev. 94, 127-155 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320-330 (1994).
[CrossRef]

1993

H. Bässler, "Charge transport in disordered organic photoconductors a Monte Carlo simulation study," Phys. Status Solidi B 175, 15-56 (1993).
[CrossRef]

H. Bässler, "Charge-transport in random organic photoconductors," Adv. Mater. 5, 662-665 (1993).
[CrossRef]

1992

J. S. Schildkraut and A. V. Buettner, "Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers," J. Appl. Phys. 72, 1888-1893 (1992).
[CrossRef]

1990

C. C. Teng and H. C. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 29, 1734-1736 (1990).
[CrossRef]

J. S. Schildkraut, "Determination of the electro-optical coefficient of a poled polymer film," Appl. Opt. 29, 2839-2841 (1990).
[CrossRef] [PubMed]

1984

D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984).
[CrossRef]

1982

R. A. Marcus and P. J. Siders, "Theory of highly exothermic electron transfer reactions," J. Phys. Chem. 86, 622-630 (1982).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979).
[CrossRef]

1969

E. Gipstein and W. A. Hewett, "Polymerization and copolymerization of N-vinylindole and N-vinylmethylindoles," Macromolecules 2, 82-85 (1969).
[CrossRef]

Angelone, R.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

Angiuli, M.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

Bässler, H.

H. Bässler, "Charge-transport in random organic photoconductors," Adv. Mater. 5, 662-665 (1993).
[CrossRef]

H. Bässler, "Charge transport in disordered organic photoconductors a Monte Carlo simulation study," Phys. Status Solidi B 175, 15-56 (1993).
[CrossRef]

Binks, D. J.

Bittner, R.

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
[CrossRef]

R. Bittner, C. Bräuchle, and K. Meerholz, "Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers," Appl. Opt. 37, 2843-2851 (1998).
[CrossRef]

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Bjorklund, G. C.

Bräuchle, C.

R. Bittner, C. Bräuchle, and K. Meerholz, "Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers," Appl. Opt. 37, 2843-2851 (1998).
[CrossRef]

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Brustolin, F.

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

Buettner, A. V.

J. S. Schildkraut and A. V. Buettner, "Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers," J. Appl. Phys. 72, 1888-1893 (1992).
[CrossRef]

Castè, C.

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

Castelvetro, V.

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

Cesca, S.

A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979).
[CrossRef]

Ciardelli, F.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

Cimrová, V.

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

Colligiani, A.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

Däubler, T. K.

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
[CrossRef]

De Nardin, Y.

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Fitzgerald, J. J.

R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995).
[CrossRef]

Gatti, G.

A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979).
[CrossRef]

Gipstein, E.

E. Gipstein and W. A. Hewett, "Polymerization and copolymerization of N-vinylindole and N-vinylmethylindoles," Macromolecules 2, 82-85 (1969).
[CrossRef]

Greco, F.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

Hache, F.

He, M.

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
[CrossRef] [PubMed]

Hendrickx, E.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Hewett, W. A.

E. Gipstein and W. A. Hewett, "Polymerization and copolymerization of N-vinylindole and N-vinylmethylindoles," Macromolecules 2, 82-85 (1969).
[CrossRef]

Hwang, J.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
[CrossRef]

Khand, D. J. K.

Kim, N.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
[CrossRef]

Kippelen, B.

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Man, H. C.

C. C. Teng and H. C. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 29, 1734-1736 (1990).
[CrossRef]

Marcus, R. A.

R. A. Marcus and P. J. Siders, "Theory of highly exothermic electron transfer reactions," J. Phys. Chem. 86, 622-630 (1982).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Mazzotta, A.

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

Meerholz, K.

F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002).
[CrossRef] [PubMed]

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
[CrossRef]

R. Bittner, C. Bräuchle, and K. Meerholz, "Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers," Appl. Opt. 37, 2843-2851 (1998).
[CrossRef]

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[CrossRef]

Michelotti, D.

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
[CrossRef] [PubMed]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, "Orientationally enhanced photorefractive effect in polymers," J. Opt. Soc. Am. B 11, 320-330 (1994).
[CrossRef]

W. E. Moerner and S. Silence, "Polymeric photorefractive materials," Chem. Rev. 94, 127-155 (1994).
[CrossRef]

Moon, H.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
[CrossRef]

Neher, D.

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
[CrossRef] [PubMed]

O. Ostroverkhova and K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002).
[CrossRef]

Pai, D. M.

D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984).
[CrossRef]

Park, S. Y.

H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
[CrossRef]

Persoons, A.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

Peyghambarian, N.

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[CrossRef]

Priola, A.

A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979).
[CrossRef]

Romano, A.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

Ruggeri, G.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

Samyn, C.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

Sandalphon,

Schildkraut, J. S.

J. S. Schildkraut and A. V. Buettner, "Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers," J. Appl. Phys. 72, 1888-1893 (1992).
[CrossRef]

J. S. Schildkraut, "Determination of the electro-optical coefficient of a poled polymer film," Appl. Opt. 29, 2839-2841 (1990).
[CrossRef] [PubMed]

Siders, P. J.

R. A. Marcus and P. J. Siders, "Theory of highly exothermic electron transfer reactions," J. Phys. Chem. 86, 622-630 (1982).
[CrossRef]

Silence, S.

W. E. Moerner and S. Silence, "Polymeric photorefractive materials," Chem. Rev. 94, 127-155 (1994).
[CrossRef]

Silence, S. M.

Singer, K. D.

O. Ostroverkhova and K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002).
[CrossRef]

Sinicropi, J. A.

R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Stolka, M.

D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984).
[CrossRef]

Suna, A.

Y. Wang and A. Suna, "Fullerenes in photoconductive polymers. Charge generation and charge transport," J. Phys. Chem. B 101, 5627-5638 (1997).
[CrossRef]

Teng, C. C.

C. C. Teng and H. C. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 29, 1734-1736 (1990).
[CrossRef]

Tombari, E.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

Twieg, R. J.

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
[CrossRef] [PubMed]

Van den Broeck, K.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

Van Krevelen, D. W.

D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), pp. 535-583.

Van Steenwinckel, D.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

Veracini, C. A.

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Volodin, B. L.

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[CrossRef]

Wang, Y.

Y. Wang and A. Suna, "Fullerenes in photoconductive polymers. Charge generation and charge transport," J. Phys. Chem. B 101, 5627-5638 (1997).
[CrossRef]

West, D. P.

Wortmann, R.

F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002).
[CrossRef] [PubMed]

Würthner, F.

F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002).
[CrossRef] [PubMed]

Yanus, J. F.

D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984).
[CrossRef]

Young, R. H.

R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995).
[CrossRef]

Adv. Mater.

K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, "Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores," Adv. Mater. 9, 1043-1046 (1997).
[CrossRef]

H. Bässler, "Charge-transport in random organic photoconductors," Adv. Mater. 5, 662-665 (1993).
[CrossRef]

R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, "Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers," Adv. Mater. 11, 123-127 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. C. Teng and H. C. Man, "Simple reflection technique for measuring the electro-optic coefficient of poled polymers," Appl. Phys. Lett. 29, 1734-1736 (1990).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moerner, "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

W. E. Moerner and S. Silence, "Polymeric photorefractive materials," Chem. Rev. 94, 127-155 (1994).
[CrossRef]

ChemPhysChem

F. Würthner, R. Wortmann, and K. Meerholz, "Chromophore design for photorefractive organic materials," ChemPhysChem 3, 17-31 (2002).
[CrossRef] [PubMed]

O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, "Role of temperature in controlling performance of photorefractive organic glasses," ChemPhysChem 4, 732-744 (2003).
[CrossRef] [PubMed]

e-Polymers

R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, "Synthesis and electrooptical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials," e-Polymers 075, 1-15 (2004).

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electrooptic crystals. I. Steady state," Ferroelectrics 22, 949-960 (1979).
[CrossRef]

J. Appl. Phys.

J. S. Schildkraut and A. V. Buettner, "Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers," J. Appl. Phys. 72, 1888-1893 (1992).
[CrossRef]

O. Ostroverkhova and K. D. Singer, "Space-charge dynamics in photorefractive polymers," J. Appl. Phys. 92, 1727-1743 (2002).
[CrossRef]

J. Chem. Phys.

D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, "Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites," J. Chem. Phys. 112, 11030-11037 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem

D. M. Pai, J. F. Yanus, and M. Stolka, "Trap controlled hopping transport," J. Phys. Chem . 88, 4714-4717 (1984).
[CrossRef]

J. Phys. Chem.

R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, "Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers," J. Phys. Chem. 99, 9497-9506 (1995).
[CrossRef]

R. A. Marcus and P. J. Siders, "Theory of highly exothermic electron transfer reactions," J. Phys. Chem. 86, 622-630 (1982).
[CrossRef]

J. Phys. Chem. B

Y. Wang and A. Suna, "Fullerenes in photoconductive polymers. Charge generation and charge transport," J. Phys. Chem. B 101, 5627-5638 (1997).
[CrossRef]

J. Polym. Sci. Part A: Polym. Chem.

F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, "Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials," J. Polym. Sci. Part A: Polym. Chem. 39, 253-262 (2001).
[CrossRef]

Macromolecules

H. Moon, J. Hwang, N. Kim, and S. Y. Park, "Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group," Macromolecules 33, 5116-5123 (2000).
[CrossRef]

E. Gipstein and W. A. Hewett, "Polymerization and copolymerization of N-vinylindole and N-vinylmethylindoles," Macromolecules 2, 82-85 (1969).
[CrossRef]

Makromol. Chem.

A. Priola, G. Gatti, and S. Cesca, "Polymerization of 1-vinylindole and its methyl derivatives," Makromol. Chem. 180, 1-11 (1979).
[CrossRef]

Nature

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[CrossRef]

Phys. Rev. B

T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, "Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials," Phys. Rev. B 61, 13515-13527 (2000).
[CrossRef]

Phys. Status Solidi B

H. Bässler, "Charge transport in disordered organic photoconductors a Monte Carlo simulation study," Phys. Status Solidi B 175, 15-56 (1993).
[CrossRef]

Synth. Met.

C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, "Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells," Synth. Met. 138, 341-345 (2003).
[CrossRef]

Other

A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, "Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization," in Organic Photorefractives, Photoreceptors, and Nanocomposites, K.L. Lewis and K. Meerholz, eds., Proc. SPIE 4104,71-77 (2000).

D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997), pp. 535-583.

R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, "An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain," in Organic Optoelectronics and Photonics II, P.L.Heremans, M.Muccini, and E.A.Meulenkamp, eds., Proc. SPIE 6192,483-494 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Chemical structures of the repetitive unit of PVDMI and DMNPAA.

Fig. 2
Fig. 2

Electro-optic cell and the irradiation geometry of the polymer film.

Fig. 3
Fig. 3

DSC trends for (a) M40 and (b) K40 blends (see text).

Fig. 4
Fig. 4

Dependence of the photoconductivity σ (continuous lines, left axis, solid symbols) and the photorefractive optical gain coefficient Γ (dashed curves, right axis, open symbols) on the reduced temperature T r = T g T for PVK (squares), PVDMI (circles), PVI (triangles) series (see Tables 1 and 2). The curves are an aid for the eye.

Fig. 5
Fig. 5

Trend of the intensity I 2 of beam 2 when beam 1 is OFF ( P 1 IN = 0 ) , low I 2 value, and alternatively beam 1 is ON ( P 1 IN 0 ) , high I 2 value. The beam coupling ratio γ, Eq. (2), can be obtained from trends of this type.

Tables (2)

Tables Icon

Table 1 Composition of the Studied Blends, Their Glass Transition ( T g ), Reduced ( T r = T g T ), and Recrystallization ( T cryst) Temperatures

Tables Icon

Table 2 Photoconductivity (σ) and Photorefractive Optical Gain (Γ2) of the Studied Cells

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ = ( 1 / d ) [ ln ( b γ ) ln ( 1 + b γ ) ] ,
γ 2 = [ P 2     OUT ( P 1     IN 0 ) ] / [ P 2     OUT ( P 1     IN = 0 ) ]
Γ 2 Δ n tot   sin   Φ ,
tan   Φ = E 0 / E q , Φ = tan - 1 ( E 0 / E q ) .
E SC A { E 0     2 / [ 1 + ( E 0 / E q ) 2 ] } 1 / 2 ,

Metrics