Abstract

One of the factors that can influence the performance of large optical telescopes is the vibration of the telescope structure due to unsteady wind inside the telescope enclosure. Estimating the resulting degradation in image quality has been difficult because of the relatively poor understanding of the flow characteristics. Significant progress has recently been made, informed by measurements in existing observatories, wind-tunnel tests, and computational fluid dynamic analyses. We combine the information from these sources to summarize the relevant wind characteristics and enable a model of the dynamic wind loads on a telescope structure within an enclosure. The amplitude, temporal spectrum, and spatial distribution of wind disturbances are defined as a function of relevant design parameters, providing a significant improvement in our understanding of an important design issue.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Padin and W. Davison, "Model of image degradation due to wind buffeting on an extremely large telescope," Appl. Opt. 43, 592-600 (2004).
    [CrossRef] [PubMed]
  2. D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).
  3. M. K. Cho, L. Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," in Optomechanical Design and Engineering, A.Hatheway, ed., Proc. SPIE 4444,302-314 (2001).
  4. M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).
  5. G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).
  6. T. Pottebaum and D. G. MacMynowski, "Buffeting of large telescopes: wind tunnel measurements of flow in a generic enclosure," J. Fluids Struct. 22, 3-19 (2006).
    [CrossRef]
  7. K. Vogiatzis, A. Segurson, and G. Z. Angeli, "Estimating the effect of wind loading on extremely large telescope performance using computational fluid dynamics," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497, pp. 311-320 (2004)
  8. F. Forbes and G. Gabor, "Wind loading of large astronomical telescopes," in Advanced Technology Telescopes, Proc. SPIE 332, 198-205 (1982).
  9. M. Ravensbergen, "Main axes servo systems of the VLT," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,997-1005 (1994).
  10. T. M. Erm and G. Z. Angeli, "TMT wind model validation with measurements at Keck and Gemini," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710N (2006).
  11. T. Kiceniuk and K. Potter, Internal Air Flow Patterns for the Keck 10 Meter Telescope Observatory Dome, Keck Observatory Report #166 (Keck Observatory, 1986).
  12. M. Schneermann, "VLT enclosures wind tunnel tests and fluid dynamic analyses," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,465-476 (1994).
  13. J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).
  14. H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).
  15. D. S. DeYoung, "Numerical simulations of airflow in telescope enclosures," Astron. J. 112, 2896-2908 (1996).
    [CrossRef]
  16. S. Padin, "Wind-induced deformations in a segmented mirror," Appl. Opt. 41, 2381-2389 (2002).
    [CrossRef] [PubMed]
  17. K. Vogiatzis and G. Z. Angeli, "Strategies for estimating mirror and dome seeing for TMT," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710O (2006).
  18. J. E. Rossiter, "Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds," Aeronautical Research Council Reports and Memoranda, No. 3438, (1964).
  19. D. G. MacMartin, "Control challenges for extremely large telescopes," in Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technology, E.H.Anderson, ed., Proc. SPIE 5054,275-286 (2003).
  20. V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
    [CrossRef]
  21. B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).
    [CrossRef]
  22. J. Smagorinsky, "General circulation experiments with the primitive equations: 1. the basic experiment," Mon. Weather Rev. 91, 99-164 (1963).
    [CrossRef]
  23. W. R. Sears, "Some aspects of non-stationary airfoil theory and its applications," J. Aeronaut. Sci. 8, 104-108 (1941).
  24. H. W. Liepmann, "On the application of statistical concepts to the buffeting problem," J. Aeronaut. Sci. 19, 793-800 and 822 (1952).
  25. A. G. Davenport, "Buffeting of a suspension bridge by storm winds," J. Struct. Div. ASCE 88, 233-264 (1962).
  26. G. R. Srinivasan, "Acoustics and unsteady flow of telescope cavity in an airplane," J. Aircr. 27, 274-281 (2000).
    [CrossRef]
  27. D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
    [CrossRef]
  28. C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
    [CrossRef]
  29. K. Karbon and R. Singh, "Simulation and design of automobile sunroof buffeting noise control," in Eighth AIAA/CEAS Aeroacoustics Conference, June 2002, AIAA 2002-2550 (AIAA, 2002).

2006

D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).

T. Pottebaum and D. G. MacMynowski, "Buffeting of large telescopes: wind tunnel measurements of flow in a generic enclosure," J. Fluids Struct. 22, 3-19 (2006).
[CrossRef]

T. M. Erm and G. Z. Angeli, "TMT wind model validation with measurements at Keck and Gemini," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710N (2006).

K. Vogiatzis and G. Z. Angeli, "Strategies for estimating mirror and dome seeing for TMT," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710O (2006).

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

2004

S. Padin and W. Davison, "Model of image degradation due to wind buffeting on an extremely large telescope," Appl. Opt. 43, 592-600 (2004).
[CrossRef] [PubMed]

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

K. Vogiatzis, A. Segurson, and G. Z. Angeli, "Estimating the effect of wind loading on extremely large telescope performance using computational fluid dynamics," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497, pp. 311-320 (2004)

2003

D. G. MacMartin, "Control challenges for extremely large telescopes," in Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technology, E.H.Anderson, ed., Proc. SPIE 5054,275-286 (2003).

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

2002

K. Karbon and R. Singh, "Simulation and design of automobile sunroof buffeting noise control," in Eighth AIAA/CEAS Aeroacoustics Conference, June 2002, AIAA 2002-2550 (AIAA, 2002).

S. Padin, "Wind-induced deformations in a segmented mirror," Appl. Opt. 41, 2381-2389 (2002).
[CrossRef] [PubMed]

M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).

G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).

2001

M. K. Cho, L. Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," in Optomechanical Design and Engineering, A.Hatheway, ed., Proc. SPIE 4444,302-314 (2001).

2000

G. R. Srinivasan, "Acoustics and unsteady flow of telescope cavity in an airplane," J. Aircr. 27, 274-281 (2000).
[CrossRef]

1996

D. S. DeYoung, "Numerical simulations of airflow in telescope enclosures," Astron. J. 112, 2896-2908 (1996).
[CrossRef]

1994

M. Schneermann, "VLT enclosures wind tunnel tests and fluid dynamic analyses," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,465-476 (1994).

1992

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

1986

T. Kiceniuk and K. Potter, Internal Air Flow Patterns for the Keck 10 Meter Telescope Observatory Dome, Keck Observatory Report #166 (Keck Observatory, 1986).

1982

F. Forbes and G. Gabor, "Wind loading of large astronomical telescopes," in Advanced Technology Telescopes, Proc. SPIE 332, 198-205 (1982).

1974

B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).
[CrossRef]

1963

J. Smagorinsky, "General circulation experiments with the primitive equations: 1. the basic experiment," Mon. Weather Rev. 91, 99-164 (1963).
[CrossRef]

1962

A. G. Davenport, "Buffeting of a suspension bridge by storm winds," J. Struct. Div. ASCE 88, 233-264 (1962).

1952

H. W. Liepmann, "On the application of statistical concepts to the buffeting problem," J. Aeronaut. Sci. 19, 793-800 and 822 (1952).

1941

W. R. Sears, "Some aspects of non-stationary airfoil theory and its applications," J. Aeronaut. Sci. 8, 104-108 (1941).

Andersen, T.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Angeli, G. Z.

T. M. Erm and G. Z. Angeli, "TMT wind model validation with measurements at Keck and Gemini," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710N (2006).

K. Vogiatzis and G. Z. Angeli, "Strategies for estimating mirror and dome seeing for TMT," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710O (2006).

D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).

K. Vogiatzis, A. Segurson, and G. Z. Angeli, "Estimating the effect of wind loading on extremely large telescope performance using computational fluid dynamics," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497, pp. 311-320 (2004)

M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).

G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).

Blaurock, C.

D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).

Cho, M. K.

G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).

M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).

M. K. Cho, L. Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," in Optomechanical Design and Engineering, A.Hatheway, ed., Proc. SPIE 4444,302-314 (2001).

Colonius, T.

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

Cooper, K.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

Davenport, A. G.

A. G. Davenport, "Buffeting of a suspension bridge by storm winds," J. Struct. Div. ASCE 88, 233-264 (1962).

Davison, W.

DeYoung, D. S.

D. S. DeYoung, "Numerical simulations of airflow in telescope enclosures," Astron. J. 112, 2896-2908 (1996).
[CrossRef]

Dunn, J.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

Erm, T. M.

T. M. Erm and G. Z. Angeli, "TMT wind model validation with measurements at Keck and Gemini," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710N (2006).

Fitzsimmons, J.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

Forbes, F.

F. Forbes and G. Gabor, "Wind loading of large astronomical telescopes," in Advanced Technology Telescopes, Proc. SPIE 332, 198-205 (1982).

Gabor, G.

F. Forbes and G. Gabor, "Wind loading of large astronomical telescopes," in Advanced Technology Telescopes, Proc. SPIE 332, 198-205 (1982).

Gatski, T. B.

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

Herriot, G.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

Jolissaint, L.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

Karbon, K.

K. Karbon and R. Singh, "Simulation and design of automobile sunroof buffeting noise control," in Eighth AIAA/CEAS Aeroacoustics Conference, June 2002, AIAA 2002-2550 (AIAA, 2002).

Kiceniuk, T.

T. Kiceniuk and K. Potter, Internal Air Flow Patterns for the Keck 10 Meter Telescope Observatory Dome, Keck Observatory Report #166 (Keck Observatory, 1986).

Kim, S.

M. K. Cho, L. Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," in Optomechanical Design and Engineering, A.Hatheway, ed., Proc. SPIE 4444,302-314 (2001).

Lastiwka, M.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Launder, B. E.

B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).
[CrossRef]

Liepmann, H. W.

H. W. Liepmann, "On the application of statistical concepts to the buffeting problem," J. Aeronaut. Sci. 19, 793-800 and 822 (1952).

Lin, J.-C.

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

MacMartin, D. G.

D. G. MacMartin, "Control challenges for extremely large telescopes," in Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technology, E.H.Anderson, ed., Proc. SPIE 5054,275-286 (2003).

MacMynowski, D. G.

T. Pottebaum and D. G. MacMynowski, "Buffeting of large telescopes: wind tunnel measurements of flow in a generic enclosure," J. Fluids Struct. 22, 3-19 (2006).
[CrossRef]

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).

Mamou, M.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

McNamara, K.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Murray, R. M.

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

Orszag, S. A.

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

Oshkai, P.

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

Padin, S.

Pollack, M.

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

Pottebaum, T.

T. Pottebaum and D. G. MacMynowski, "Buffeting of large telescopes: wind tunnel measurements of flow in a generic enclosure," J. Fluids Struct. 22, 3-19 (2006).
[CrossRef]

Potter, K.

T. Kiceniuk and K. Potter, Internal Air Flow Patterns for the Keck 10 Meter Telescope Observatory Dome, Keck Observatory Report #166 (Keck Observatory, 1986).

Quinlan, N.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Ravensbergen, M.

M. Ravensbergen, "Main axes servo systems of the VLT," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,997-1005 (1994).

Reiss, M.

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

Riewaldt, H.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Roberts, S.

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

Rockwell, D.

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

Rossiter, J. E.

J. E. Rossiter, "Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds," Aeronautical Research Council Reports and Memoranda, No. 3438, (1964).

Rowley, C. W.

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

Schneermann, M.

M. Schneermann, "VLT enclosures wind tunnel tests and fluid dynamic analyses," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,465-476 (1994).

Sears, W. R.

W. R. Sears, "Some aspects of non-stationary airfoil theory and its applications," J. Aeronaut. Sci. 8, 104-108 (1941).

Segurson, A.

K. Vogiatzis, A. Segurson, and G. Z. Angeli, "Estimating the effect of wind loading on extremely large telescope performance using computational fluid dynamics," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497, pp. 311-320 (2004)

Shearer, A.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Sheehan, M.

G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).

Singh, R.

K. Karbon and R. Singh, "Simulation and design of automobile sunroof buffeting noise control," in Eighth AIAA/CEAS Aeroacoustics Conference, June 2002, AIAA 2002-2550 (AIAA, 2002).

Smagorinsky, J.

J. Smagorinsky, "General circulation experiments with the primitive equations: 1. the basic experiment," Mon. Weather Rev. 91, 99-164 (1963).
[CrossRef]

Smith, D. R.

M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).

Spalding, D. B.

B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).
[CrossRef]

Speziale, C. G.

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

Srinivasan, G. R.

G. R. Srinivasan, "Acoustics and unsteady flow of telescope cavity in an airplane," J. Aircr. 27, 274-281 (2000).
[CrossRef]

Stepp, L.

M. K. Cho, L. Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," in Optomechanical Design and Engineering, A.Hatheway, ed., Proc. SPIE 4444,302-314 (2001).

Stepp, L. M.

M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).

G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).

Tangham, S.

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

Vogiatzis, K.

K. Vogiatzis and G. Z. Angeli, "Strategies for estimating mirror and dome seeing for TMT," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710O (2006).

D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).

K. Vogiatzis, A. Segurson, and G. Z. Angeli, "Estimating the effect of wind loading on extremely large telescope performance using computational fluid dynamics," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497, pp. 311-320 (2004)

Wang, X.

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

Williams, D. R.

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

Yakhot, V.

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

Appl. Opt.

Astron. J.

D. S. DeYoung, "Numerical simulations of airflow in telescope enclosures," Astron. J. 112, 2896-2908 (1996).
[CrossRef]

Comput. Methods Appl. Mech. Eng.

B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).
[CrossRef]

J. Aeronaut. Sci.

W. R. Sears, "Some aspects of non-stationary airfoil theory and its applications," J. Aeronaut. Sci. 8, 104-108 (1941).

H. W. Liepmann, "On the application of statistical concepts to the buffeting problem," J. Aeronaut. Sci. 19, 793-800 and 822 (1952).

J. Aircr.

G. R. Srinivasan, "Acoustics and unsteady flow of telescope cavity in an airplane," J. Aircr. 27, 274-281 (2000).
[CrossRef]

J. Fluid Mech.

C. W. Rowley, D. R. Williams, T. Colonius, R. M. Murray, and D. G. MacMynowski, "Linear models for control of cavity flow oscillations," J. Fluid Mech. 547, 317-330 (2006).
[CrossRef]

J. Fluids Struct.

D. Rockwell, J.-C. Lin, P. Oshkai, M. Reiss, and M. Pollack, "Shallow cavity flow tone experiments: onset of locked-on states," J. Fluids Struct. 17, 381-414 (2003).
[CrossRef]

T. Pottebaum and D. G. MacMynowski, "Buffeting of large telescopes: wind tunnel measurements of flow in a generic enclosure," J. Fluids Struct. 22, 3-19 (2006).
[CrossRef]

J. Struct. Div. ASCE

A. G. Davenport, "Buffeting of a suspension bridge by storm winds," J. Struct. Div. ASCE 88, 233-264 (1962).

Mon. Weather Rev.

J. Smagorinsky, "General circulation experiments with the primitive equations: 1. the basic experiment," Mon. Weather Rev. 91, 99-164 (1963).
[CrossRef]

Phys. Fluids A

V. Yakhot, S. A. Orszag, S. Tangham, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Phys. Fluids A 4, 1510-1520 (1992).
[CrossRef]

Other

K. Karbon and R. Singh, "Simulation and design of automobile sunroof buffeting noise control," in Eighth AIAA/CEAS Aeroacoustics Conference, June 2002, AIAA 2002-2550 (AIAA, 2002).

K. Vogiatzis, A. Segurson, and G. Z. Angeli, "Estimating the effect of wind loading on extremely large telescope performance using computational fluid dynamics," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497, pp. 311-320 (2004)

F. Forbes and G. Gabor, "Wind loading of large astronomical telescopes," in Advanced Technology Telescopes, Proc. SPIE 332, 198-205 (1982).

M. Ravensbergen, "Main axes servo systems of the VLT," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,997-1005 (1994).

T. M. Erm and G. Z. Angeli, "TMT wind model validation with measurements at Keck and Gemini," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710N (2006).

T. Kiceniuk and K. Potter, Internal Air Flow Patterns for the Keck 10 Meter Telescope Observatory Dome, Keck Observatory Report #166 (Keck Observatory, 1986).

M. Schneermann, "VLT enclosures wind tunnel tests and fluid dynamic analyses," in Advanced Technology Optical Telescopes V, L.M.Stepp, ed., Proc. SPIE 2199,465-476 (1994).

J. Fitzsimmons, J. Dunn, G. Herriot, L. Jolissaint, S. Roberts, M. Mamou, and K. Cooper, "Predicting the aerodynamic performance of the Canadian very large optical telescope," in Modeling and Systems Engineering for Astronomy, S.C.Craig and M.J.Cullum, eds., Proc. SPIE 5497,321-328 (2004).

H. Riewaldt, M. Lastiwka, N. Quinlan, K. McNamara, X. Wang, T. Andersen, and A. Shearer, "Wind on the Euro50 enclosure," in Astronomical Structures and Mechanisms Technology, J.Antebi and D.Lemke, eds., Proc. SPIE 5495,537-548 (2004).

K. Vogiatzis and G. Z. Angeli, "Strategies for estimating mirror and dome seeing for TMT," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710O (2006).

J. E. Rossiter, "Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds," Aeronautical Research Council Reports and Memoranda, No. 3438, (1964).

D. G. MacMartin, "Control challenges for extremely large telescopes," in Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technology, E.H.Anderson, ed., Proc. SPIE 5054,275-286 (2003).

D. G. MacMynowski, C. Blaurock, G. Z. Angeli, and K. Vogiatzis, "Modeling wind-buffeting of the Thirty Meter Telescope," in Modeling, Systems Engineering and Program Management for Astronomy II, M.Cullum and G.Angeli, eds., Proc. SPIE 6271, 62710M (2006).

M. K. Cho, L. Stepp, and S. Kim, "Wind buffeting effects on the Gemini 8 m primary mirrors," in Optomechanical Design and Engineering, A.Hatheway, ed., Proc. SPIE 4444,302-314 (2001).

M. K. Cho, L. M. Stepp, G. Z. Angeli, and D. R. Smith, "Wind loading of large telescopes," in Large Ground-Based Telescopes, J.M.Oschman and L.M.Stepp, eds., Proc. SPIE 4837, pp. 352-367 (2002).

G. Z. Angeli, M. K. Cho, M. Sheehan, and L. M. Stepp, "Characterization of wind loading of telescopes," in Integrated Modeling of Telescopes, T.Andersen, ed., Proc. SPIE 4757,72-83 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Illustration of enclosure designs. (a) Simplified enclosure used in the M2 flow-field wind-tunnel test. Realistic (nonsmooth) enclosure designs based on the Gemini dome geometry were simulated with the CFD with (b) the shutter raised and (c) lowered to its minimum position.

Fig. 2
Fig. 2

Comparison between wind-tunnel DPIV data and the CFD. Data are on axis, position normalized by dome radius and the mean (upper) and unsteady rms (lower) normalized by external wind speed. For DPIV data, the actual particle velocity (dashed curve) and worst-case estimate of flow velocity (open circles) are shown.

Fig. 3
Fig. 3

(Color online) Comparison of the CFD velocity spectrum and spectrum from data measured at Gemini: 0° azimuth, 30° zenith angle, closed vents.

Fig. 4
Fig. 4

Mean (solid line, ×) and rms fluctuation (dashed line, ○) velocity near M2 measured at Gemini for upwind orientations, as a function of external rms wind speed.

Fig. 5
Fig. 5

Effective transverse broadband turbulent velocity near M2 and supporting structure, from wind-tunnel DPIV data as a function of axial distance from the center of the dome, upstream orientation (solid curve) and downstream (dashed curve). The vertical line is at R c .

Fig. 6
Fig. 6

Comparison of computed upwind axial velocity profiles for different domes. The calotte (●) and Gemini (□) cases include a telescope structure, and the gap in the plot corresponds to the location of M2.

Fig. 7
Fig. 7

Effective velocity near M1 from Gemini data as a function of external wind speed. Solid points and line correspond to cases with vent gates closed. The vent configuration for other cases is labeled o for open, h for half, c for closed; the first letter is the upwind vent, and the second is the downwind vent.

Fig. 8
Fig. 8

Comparison between unsteady pressure on M1 and effective velocity from Gemini data as a function of external wind speed for estimating local pressure coefficient. Solid points and line correspond to cases with vent gates closed. Vent labeling is as in Fig. 7.

Fig. 9
Fig. 9

(Color online) M2 velocity spectrum for one case, vents closed, compared with a von Karman spectrum. The rms velocity is 13 % higher than the rms of the fit due to the higher amplitudes at very low frequencies.

Fig. 10
Fig. 10

(Color online) Representative M1 pressure spectra measured at Gemini, compared with von Karman spectrum (dashed curve); without venting (upper), and with open vents (lower).

Fig. 11
Fig. 11

Exact calculation of frozen-turbulence wind spectrum compared with a simple fit. For one-dimensional integration (upper), the structural attenuation is shown. For two-dimensional integration, the full spectrum is shown for the n = 0 Zernike basis function; the final slope is 13 / 3 .

Fig. 12
Fig. 12

(Color online) Velocity spectrum measured in a wind tunnel using a hot-wire anemometer for upwind orientation. The frequency scale is normalized by the convective time scale across the opening. The dashed curve is a fit with a von Karman spectrum.

Fig. 13
Fig. 13

Effect of venting on shear layer amplitude. The integrated mean-square velocity for the shear layer modes (solid line) is computed at one location near M2 from wind-tunnel measurements with three different levels of vented area. The residual broadband turbulence amplitude (dashed line) is nearly constant.

Equations (135)

Equations on this page are rendered with MathJax. Learn more.

1 %
28 % 40 %
20   m
q = 1 / 2 ρ U 2
U
13.5 m / s
10   Hz
10 %
9 °
1 %
30   m
D = 0.83   m
H = 0.28   m
H f = 0.09   m
L = 0.32   m
25 %
D v = 5   cm
D = 90   m
H = 30   m
H f = 10   m
L = 35   m
D v = 5.5   m
108
( 20   M )
35 m / s
Re   2   M
0.5   m
k - ε
k - ε
2 / 3 k
0.01   m
0.002   m
0.2   ms
35 m / s
1   m
0.5 0.25   m
0.2 0.05   m
20   Hz
4000   m
u ( z ) = U ( z / h ) 1 / 7
10 m / s
2 %
5   m
u = u ¯ + u
p = p ¯ + p
p = 1 / 2 ρ u 2 = 1 / 2 ρ ( u ¯ 2 + 2 u ¯ u + u 2 ) ,
p ¯ = 1 / 2 ρ u ¯ 2 + 1 / 2 ρ u 2 ¯ ,
p = 1 / 2 ρ ( 2 u ¯ u + u 2 - u 2 ¯ ) ,
u ¯
u rms = ( u 2 ¯ ) 1 / 2
p rms = ( p 2 ¯ ) 1 / 2 = 1 / 2 ρ u eff 2 ,
u
u eff 2 = ( 2 u ¯ u rms ) 2 + 2 u rms 4 .
U
p rms = C p ( 1 / 2 ρ u eff 2 ) ,
F rms = C D A ( 1 / 2 ρ u eff 2 ) .
C p
25 %
40 %
10 %
40 %
23 %
43 %
u eff / U
R c 2 = ( D / 2 ) 2 ( L / 2 ) 2
( D / L ) 2 / 3
L / D = 0.38
20 % 25 %
u M1,eff
7 %
( C p 1 )
3 %
30 %
35 %
0.25
0.4   m
f 5 / 3
7 / 3
Φ VK ( f ) = [ 2 π Γ ( 2 / 3 ) Γ ( 5 / 6 ) ] 1 / f 0 [ 1 + ( f / f 0 ) 2 ] 7 / 6 .
f 0
Φ S ( f ) = [ 1 + ( f / f s ) 2 ] 1 ,
13 / 3
f s
f 8 / 3
13 / 3
k = 2 π f / U
p ( x ) = 2 p ( f ) Re ( exp { i [ k x + φ ( t ) ] } ) ,
p ( f )
F = w L / 2 L / 2 p ( x ) d x = 2 p ( f ) Re [ exp ( i φ ) ] w L   sinc ( k L / 2 ) .
1 / 2
k L / 2 = 1
f = U / ( π L )
F eq
L F eq = w 0 L x p ( x ) d x .
F eq ( f ) 2 = 2 L 2 [ 1 cos ( k L ) k L   sin ( k L ) + ( k L ) 2 / 2 ] / ( L k ) 4 p ( f ) 2 w 2 .
F eq ( f ) 2 = ( L 2 / 4 ) [ 1 + ( k L / 2 ) 2 ] 1 p ( f ) 2 w 2 .
F leg ( f ) 2 = ( w 2 L 2 / 4 ) Φ ( f )
f = U / ( π L )
F M2
F M2,net ( f ) 2 = F M2 ( f ) 2 + [ 2 F M2 ( f ) F leg ( f ) + F leg ( f ) 2 ] × [ 1 + ( k L / 2 ) 2 ] 1 .
Z nm
W ( r ) = 1 / π
r 1
W ( r ) = 0
W ( r ) Z nm ( r )
Q nm ( k ) = ( 1 ) ( n m ) / 2 n + 1 J n + 1 ( 2 π k ) / π k ,
2   sin ( m φ )
2   cos ( m φ )
k = k exp ( i φ ) = ( k x     2 + k y     2 ) 1 / 2 exp ( i φ )
k x = f R / U
2 π
k y
F nm 2 ( f R / U ) = 2 π Γ ( 2 / 3 ) Γ ( 5 / 6 ) n + 1 π 2 × [ J n + 1 ( 2 π k ) ] 2 k 2 k 0 [ 1 + ( k / k 0 ) 2 ] 7 / 6  d k y ( A p rms ) 2 .
k y
A n ( n + 1 ) 2 ,
f n ( U / 2 π R ) ( n + 1 ) 3 / 2 .
n = 0
20 %
0.1 U
p rms 1 / 2 ρ
( 0.07 U ) 2
f n = 0.66 n U / L
10 %
U
25 %
1 / 2 ρ U 2
25 %
25
50 %
0.25   Hz
1   km
R c
13 %
n = 0
13 / 3

Metrics