Abstract

We present a detailed analysis of a 2R optical regenerator based on self-phase modulation in As2Se3 chalcogenide glass fiber using frequency-resolved optical gating (FROG). We obtain good agreement between the FROG measurements and theory, and confirm that the output pulses are near-transform limited. We show that two-photon absorption improves the profile of the power transfer function while not degrading the temporal performance.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J. Lightwave Technol. 21, 2779-2790 (2003).
    [CrossRef]
  2. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceed 24th European Conference on Optical Communication (IEEE Press, 1998), pp. 475-476.
  3. M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
    [CrossRef]
  4. M. Rochette, J. L. Blows, and B. J. Eggleton, "An all-optical regenerator that discriminates noise from signal," in 31st European Conference on Optical Communications (ECOC) (IEEE Press, 2005), p. We2.4.1.
  5. T. H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
    [CrossRef]
  6. G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.
  7. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  8. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
    [CrossRef]
  9. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  11. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  12. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
    [CrossRef]
  13. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14, 1140-1142 (1989).
    [CrossRef] [PubMed]

2006

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

2005

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

M. Rochette, J. L. Blows, and B. J. Eggleton, "An all-optical regenerator that discriminates noise from signal," in 31st European Conference on Optical Communications (ECOC) (IEEE Press, 2005), p. We2.4.1.

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

2004

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
[CrossRef]

T. H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

2003

2002

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

1998

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceed 24th European Conference on Optical Communication (IEEE Press, 1998), pp. 475-476.

1996

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
[CrossRef]

1989

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

Andrejco, M. J.

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
[CrossRef]

Balmefrezol, E.

Blows, J. L.

M. Rochette, J. L. Blows, and B. J. Eggleton, "An all-optical regenerator that discriminates noise from signal," in 31st European Conference on Optical Communications (ECOC) (IEEE Press, 2005), p. We2.4.1.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Brindel, P.

Delong, K. W.

Eggleton, B. J.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

M. Rochette, J. L. Blows, and B. J. Eggleton, "An all-optical regenerator that discriminates noise from signal," in 31st European Conference on Optical Communications (ECOC) (IEEE Press, 2005), p. We2.4.1.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Essiambre, R.-J.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Feder, K. D. K.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Fu, L. B.

Headley, C.

T. H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Her, T.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Her, T. H.

T. H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

Hodelin, J.

Holzlohner, R.

Joergensen, C.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
[CrossRef]

Kutz, J. N.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Lamont, M. R. E.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

Lavigne, B.

Leclerc, O.

Lenz, G.

Leuthold, J.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Mamyshev, P. V.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceed 24th European Conference on Optical Communication (IEEE Press, 1998), pp. 475-476.

Menyuk, C. R.

Mizrahi, V.

Mok, J. T.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Moss, D.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Moss, D. J.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
[CrossRef]

Pierre, L.

Raybon, G.

T. H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Rochette, M.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

M. Rochette, J. L. Blows, and B. J. Eggleton, "An all-optical regenerator that discriminates noise from signal," in 31st European Conference on Optical Communications (ECOC) (IEEE Press, 2005), p. We2.4.1.

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

Rouvillain, D.

Saifi, M. A.

Sanghera, J.

Seguineau, F.

Shaw, L. B.

Sinkin, O. V.

Slusher, R. E.

Stegeman, G. I.

Steinvurzel, P.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Su, Y.

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

Ta'eed, V. G.

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
[CrossRef]

Zweck, J.

Electron. Lett.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two photon absorption effects on self-phase modulation based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006).
[CrossRef]

M. Rochette, J. N. Kutz, J. L. Blows, D. Moss, J. T. Mok, and B. J. Eggleton, "Bit-error-ratio improvement with 2R optical regenerators," IEEE Photon. Technol. Lett. 17, 908-910 (2005).
[CrossRef]

T. H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Communications Conference (OFC) Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. FD101-FD103.

M. Rochette, J. L. Blows, and B. J. Eggleton, "An all-optical regenerator that discriminates noise from signal," in 31st European Conference on Optical Communications (ECOC) (IEEE Press, 2005), p. We2.4.1.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceed 24th European Conference on Optical Communication (IEEE Press, 1998), pp. 475-476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of device operation. BPF, bandpass filter.

Fig. 2
Fig. 2

Experimental (circles) and theoretical (curve) fiber transparency of the chalcogenide fiber with no filter present. The average power is measured over a pulsed signal made of Gaussian pulses with the FWHM = 5.7   ps sent at a repetition rate of 9 .04   MHz . The curvature is due to TPA.

Fig. 3
Fig. 3

Experimental (black solid curves) and theoretical (gray dashed curves) spectra of the SPM-broadened pulses at four different input peak powers, measured using an OSA: (a) 2 .5   W , (b) 7 .3   W , (c) 15.5   W , (d) 27.2   W .

Fig. 4
Fig. 4

Experimental (solid curve) and theoretical (dashed curve) input pulse temporal profiles.

Fig. 5
Fig. 5

Experimental (black curves) and theoretical (gray curves) spectra (solid curves) and spectral phase (dashed curves) of the SPM-broadened pulses at four input peak powers, measured using FROG: (a) 2.5   W , (b) 7.3   W , (c) 15.5   W , (d) 27.2   W .

Fig. 6
Fig. 6

Experimental (black curves) and theoretical (gray curves) pulse temporal profiles (solid curves) and temporal phase (dashed curves) of the SPM-broadened pulses at four input peak powers, measured using FROG: (a) 2.5   W , (b) 7.3   W , (c) 15.5   W , (d) 27.2   W .

Fig. 7
Fig. 7

Experimental (symbols) and theoretical (curves) PTF for the regenerator with the TBPF offset at 1 .3   nm (circles and solid curve), 1 .6   nm (crosses and dashed curve), and 2 .0   nm (triangles and dotted curve) offset from the input pulse wavelength.

Fig. 8
Fig. 8

Device input (black curves) and output (gray curves) pulse amplitude (solid curves) and phase (dashed curves) at 27 W peak input power, measured using FROG.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

40 Gbits / s
1000 ×
As 2 Se 3
2.8   m
4 .1   m
As 2 Se 3
0.56   nm
d I d z = α 0 I β I 2 ,
α 0
5.7   ps
9 .04   MHz
1550   nm
2 .0   nm
n 2 = 1.1 × 10 13 cm 2 / W
β = 2.5 × 10 12 W / m
( = n 2 / β λ )
λ = 1550   nm
D = 560   ps ( nm / km )
α 0 = 1 dB / m
0.3   ps ( nm 2 / km ) ]
2   dB
3   dB
(< 0 .2   rad
As 2 Se 3
As 2 Se 3
= 5.7   ps
9 .04   MHz
2 .5   W
7 .3   W
15.5   W
27.2   W
2.5   W
7.3   W
15.5   W
27.2   W
2.5   W
7.3   W
15.5   W
27.2   W
1 .3   nm
1 .6   nm
2 .0   nm
27 W

Metrics