Abstract

A series of new lithium aluminum silicate (LAS) glass systems doped with chromium ion is prepared. The reflectance and transmittance of the glass slabs are recorded. By means of an iteration procedure, the glass refractive index n and the extinction coefficient k and their dispersions are obtained. Across a wide spectral range of 0.21.6  μm, the dispersion curves are used to determine the atomic and quantum constants of the prepared glasses. These findings provide the average oscillator wavelength, the average oscillator strength, oscillator energy, dispersion energy, lattice energy, and material dispersion of the glass materials to be calculated. For optical waveguide applications, the wavelength for zero material dispersion is obtained. Dilatometric measurements are performed and the thermal expansion coefficient is calculated to throw some light on the thermo-optical properties of the present glasses correlating them with their structure and the presence of nonbridging oxygen ions.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Güldal and C. Apak, "A study on Cr3+/Cr6+ equilibria in industrial emerald green glasses," J. Non-Cryst. Solids 38-39, 251-256 (1986).
  2. G. Fuxi, D. He, and L. Huiming, "Paramagnetic resonance study on transition metal ions in phosphate, fluorophosphate and fluoride glasses. Part I: Cr3+ and Mo3+," J. Non-Cryst. Solids 52, 135-141 (1985).
  3. Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
    [CrossRef]
  4. D. Godeke, M. Muller, and C. Russel, "Thermal radiation of chromium-doped glass melts," Glass. Sci. Technol. 47, 277-282 (2001).
  5. G. S. Rao and N. Veeraiah, "Influence of Cr33+ ions on the structure and certain physical properties of PbO-As2O3 glasses," Eur. Phys. J. Appl. Phys. 16, 11-22 (2001).
    [CrossRef]
  6. D. K. Durga and N. Veeraiah, "Physical properties of ZnF<2sub>-As<2sub>O<3sub>-TeO<2sub> glasses doped with Cr3+ ions," Physica B 324, 127-141 (2002).
    [CrossRef]
  7. X. Feng and S. Tanabe, "Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses," Opt. Mater. 20, 63-72 (2002).
    [CrossRef]
  8. A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
    [CrossRef]
  9. A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
    [CrossRef]
  10. C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
    [CrossRef]
  11. T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
    [CrossRef]
  12. V. Petricevic, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?," Appl. Phys. Lett. 53, 2590-2592 (1988).
    [CrossRef]
  13. M. A. Khashan and A. M. El-Naggar, "A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab," Opt. Commun. 174, 445-453 (2000).
    [CrossRef]
  14. C. Dayanand, G. Bhikshamaiah, and M. Salagram, "IR and optical properties of PbO glass containing a small amount of silica," Mater. Lett. 23, 309-315 (1995).
    [CrossRef]
  15. A. Paul, Chemistry of Glasses (Chapman & Hall, 1982).
    [CrossRef]
  16. R. W. Ditchburn, Light (Dover, 1991), p. 457.
  17. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 93.
  18. V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).
  19. S. H. Wemple and M. Di Domenico, "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
    [CrossRef]
  20. S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
    [CrossRef]
  21. S. H. Wemple, "Material dispersion in optical fibers," Appl. Opt. 18, 31-35 (1979).
    [CrossRef] [PubMed]
  22. H. Poignant, "Dispersive and scattering properties of a ZrF4 based glass," Electron. Lett. 17, 973-974 (1981).
    [CrossRef]
  23. S. Hirota and T. Izumitani, "Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses," J. Non-Cryst. Solids 29, 109-117 (1978).
    [CrossRef]
  24. K. Nassau and S. H. Wemple, "Material dispersion slope in optical-fibre waveguides," Electron. Lett. 18, 450-451 (1982).
    [CrossRef]
  25. E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
    [CrossRef]
  26. H. Darwish, S. N. Salama, and S. M. Salman, "Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics," Thermochim. Acta 374, 129-135 (2001).
    [CrossRef]
  27. G. Gavriliu, "Thermal expansion and characteristic points of −NaNa2O-SiONa2 glass with added oxides," J. Eur. Ceram. Soc. 22, 1375-1379 (2002).
    [CrossRef]
  28. J. Zarzycki, Glass and the Vitreous State (Cambridge U. Press, 1991).
  29. D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
    [CrossRef]

2006 (1)

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

2005 (2)

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
[CrossRef]

2004 (1)

D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
[CrossRef]

2003 (2)

V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

2002 (3)

D. K. Durga and N. Veeraiah, "Physical properties of ZnF<2sub>-As<2sub>O<3sub>-TeO<2sub> glasses doped with Cr3+ ions," Physica B 324, 127-141 (2002).
[CrossRef]

X. Feng and S. Tanabe, "Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses," Opt. Mater. 20, 63-72 (2002).
[CrossRef]

G. Gavriliu, "Thermal expansion and characteristic points of −NaNa2O-SiONa2 glass with added oxides," J. Eur. Ceram. Soc. 22, 1375-1379 (2002).
[CrossRef]

2001 (3)

H. Darwish, S. N. Salama, and S. M. Salman, "Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics," Thermochim. Acta 374, 129-135 (2001).
[CrossRef]

D. Godeke, M. Muller, and C. Russel, "Thermal radiation of chromium-doped glass melts," Glass. Sci. Technol. 47, 277-282 (2001).

G. S. Rao and N. Veeraiah, "Influence of Cr33+ ions on the structure and certain physical properties of PbO-As2O3 glasses," Eur. Phys. J. Appl. Phys. 16, 11-22 (2001).
[CrossRef]

2000 (2)

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

M. A. Khashan and A. M. El-Naggar, "A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab," Opt. Commun. 174, 445-453 (2000).
[CrossRef]

1995 (1)

C. Dayanand, G. Bhikshamaiah, and M. Salagram, "IR and optical properties of PbO glass containing a small amount of silica," Mater. Lett. 23, 309-315 (1995).
[CrossRef]

1991 (2)

R. W. Ditchburn, Light (Dover, 1991), p. 457.

J. Zarzycki, Glass and the Vitreous State (Cambridge U. Press, 1991).

1988 (1)

V. Petricevic, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?," Appl. Phys. Lett. 53, 2590-2592 (1988).
[CrossRef]

1986 (1)

O. Güldal and C. Apak, "A study on Cr3+/Cr6+ equilibria in industrial emerald green glasses," J. Non-Cryst. Solids 38-39, 251-256 (1986).

1985 (1)

G. Fuxi, D. He, and L. Huiming, "Paramagnetic resonance study on transition metal ions in phosphate, fluorophosphate and fluoride glasses. Part I: Cr3+ and Mo3+," J. Non-Cryst. Solids 52, 135-141 (1985).

1982 (2)

A. Paul, Chemistry of Glasses (Chapman & Hall, 1982).
[CrossRef]

K. Nassau and S. H. Wemple, "Material dispersion slope in optical-fibre waveguides," Electron. Lett. 18, 450-451 (1982).
[CrossRef]

1981 (1)

H. Poignant, "Dispersive and scattering properties of a ZrF4 based glass," Electron. Lett. 17, 973-974 (1981).
[CrossRef]

1980 (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 93.

1979 (1)

1978 (1)

S. Hirota and T. Izumitani, "Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses," J. Non-Cryst. Solids 29, 109-117 (1978).
[CrossRef]

1973 (1)

S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
[CrossRef]

1971 (1)

S. H. Wemple and M. Di Domenico, "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

1961 (1)

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Aboukaïs, A.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Alfano, R. R.

V. Petricevic, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?," Appl. Phys. Lett. 53, 2590-2592 (1988).
[CrossRef]

Apak, C.

O. Güldal and C. Apak, "A study on Cr3+/Cr6+ equilibria in industrial emerald green glasses," J. Non-Cryst. Solids 38-39, 251-256 (1986).

Appa Rao, B.

C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
[CrossRef]

Aswa, C. K.

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Barbosa, L. C.

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Bassani, F.

V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).

Bhikshamaiah, G.

C. Dayanand, G. Bhikshamaiah, and M. Salagram, "IR and optical properties of PbO glass containing a small amount of silica," Mater. Lett. 23, 309-315 (1995).
[CrossRef]

Blume, R. D.

D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
[CrossRef]

Bogomolova, L. D.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 93.

Cattaruzza, E.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Cersar, C. L.

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Chillcce, E. F.

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Darwish, H.

H. Darwish, S. N. Salama, and S. M. Salman, "Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics," Thermochim. Acta 374, 129-135 (2001).
[CrossRef]

Dayanand, C.

C. Dayanand, G. Bhikshamaiah, and M. Salagram, "IR and optical properties of PbO glass containing a small amount of silica," Mater. Lett. 23, 309-315 (1995).
[CrossRef]

Deshkovskaya, A. A.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

D'Haenens, I. T.

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Di Domenico, M.

S. H. Wemple and M. Di Domenico, "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

Ditchburn, R. W.

R. W. Ditchburn, Light (Dover, 1991), p. 457.

Drummond, C. H.

D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
[CrossRef]

Durga, D. K.

D. K. Durga and N. Veeraiah, "Physical properties of ZnF<2sub>-As<2sub>O<3sub>-TeO<2sub> glasses doped with Cr3+ ions," Physica B 324, 127-141 (2002).
[CrossRef]

Dymshits, O. S.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

El-Naggar, A. M.

M. A. Khashan and A. M. El-Naggar, "A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab," Opt. Commun. 174, 445-453 (2000).
[CrossRef]

Evtuhov, V.

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Feng, X.

X. Feng and S. Tanabe, "Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses," Opt. Mater. 20, 63-72 (2002).
[CrossRef]

Fuxi, G.

G. Fuxi, D. He, and L. Huiming, "Paramagnetic resonance study on transition metal ions in phosphate, fluorophosphate and fluoride glasses. Part I: Cr3+ and Mo3+," J. Non-Cryst. Solids 52, 135-141 (1985).

Gavriliu, G.

G. Gavriliu, "Thermal expansion and characteristic points of −NaNa2O-SiONa2 glass with added oxides," J. Eur. Ceram. Soc. 22, 1375-1379 (2002).
[CrossRef]

Gayen, S. K.

V. Petricevic, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?," Appl. Phys. Lett. 53, 2590-2592 (1988).
[CrossRef]

Godeke, D.

D. Godeke, M. Muller, and C. Russel, "Thermal radiation of chromium-doped glass melts," Glass. Sci. Technol. 47, 277-282 (2001).

Güldal, O.

O. Güldal and C. Apak, "A study on Cr3+/Cr6+ equilibria in industrial emerald green glasses," J. Non-Cryst. Solids 38-39, 251-256 (1986).

Han, Y. S.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

He, D.

G. Fuxi, D. He, and L. Huiming, "Paramagnetic resonance study on transition metal ions in phosphate, fluorophosphate and fluoride glasses. Part I: Cr3+ and Mo3+," J. Non-Cryst. Solids 52, 135-141 (1985).

Heo, J.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Hirota, S.

S. Hirota and T. Izumitani, "Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses," J. Non-Cryst. Solids 29, 109-117 (1978).
[CrossRef]

Hoskins, R. H.

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Huang, D.

D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
[CrossRef]

Huiming, L.

G. Fuxi, D. He, and L. Huiming, "Paramagnetic resonance study on transition metal ions in phosphate, fluorophosphate and fluoride glasses. Part I: Cr3+ and Mo3+," J. Non-Cryst. Solids 52, 135-141 (1985).

Izumitani, T.

S. Hirota and T. Izumitani, "Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses," J. Non-Cryst. Solids 29, 109-117 (1978).
[CrossRef]

Kanth, C. L.

C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
[CrossRef]

Khashan, M. A.

M. A. Khashan and A. M. El-Naggar, "A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab," Opt. Commun. 174, 445-453 (2000).
[CrossRef]

Kim, K. H.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Krasilnikova, N. A.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Lucarini, V.

V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).

Maiman, T. H.

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Malyarevich, A. M.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

Moreira, W. C.

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Muller, M.

D. Godeke, M. Muller, and C. Russel, "Thermal radiation of chromium-doped glass melts," Glass. Sci. Technol. 47, 277-282 (2001).

Nassau, K.

K. Nassau and S. H. Wemple, "Material dispersion slope in optical-fibre waveguides," Electron. Lett. 18, 450-451 (1982).
[CrossRef]

Neves, A. A. R.

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Paul, A.

A. Paul, Chemistry of Glasses (Chapman & Hall, 1982).
[CrossRef]

Pavlovskii, V. K.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

Peiponen, K.

V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).

Petricevic, V.

V. Petricevic, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?," Appl. Phys. Lett. 53, 2590-2592 (1988).
[CrossRef]

Poignant, H.

H. Poignant, "Dispersive and scattering properties of a ZrF4 based glass," Electron. Lett. 17, 973-974 (1981).
[CrossRef]

Prushinsky, S. A.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Raghavaiah, B. V.

C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
[CrossRef]

Rao, G. S.

G. S. Rao and N. Veeraiah, "Influence of Cr33+ ions on the structure and certain physical properties of PbO-As2O3 glasses," Eur. Phys. J. Appl. Phys. 16, 11-22 (2001).
[CrossRef]

Rodriguez, E.

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Russel, C.

D. Godeke, M. Muller, and C. Russel, "Thermal radiation of chromium-doped glass melts," Glass. Sci. Technol. 47, 277-282 (2001).

Saarinen, J. J.

V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).

Salagram, M.

C. Dayanand, G. Bhikshamaiah, and M. Salagram, "IR and optical properties of PbO glass containing a small amount of silica," Mater. Lett. 23, 309-315 (1995).
[CrossRef]

Salama, S. N.

H. Darwish, S. N. Salama, and S. M. Salman, "Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics," Thermochim. Acta 374, 129-135 (2001).
[CrossRef]

Salman, S. M.

H. Darwish, S. N. Salama, and S. M. Salman, "Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics," Thermochim. Acta 374, 129-135 (2001).
[CrossRef]

Tanabe, S.

X. Feng and S. Tanabe, "Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses," Opt. Mater. 20, 63-72 (2002).
[CrossRef]

Veeraiah, N.

C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
[CrossRef]

D. K. Durga and N. Veeraiah, "Physical properties of ZnF<2sub>-As<2sub>O<3sub>-TeO<2sub> glasses doped with Cr3+ ions," Physica B 324, 127-141 (2002).
[CrossRef]

G. S. Rao and N. Veeraiah, "Influence of Cr33+ ions on the structure and certain physical properties of PbO-As2O3 glasses," Eur. Phys. J. Appl. Phys. 16, 11-22 (2001).
[CrossRef]

Volk, Yu. V.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

Wang, J.

D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
[CrossRef]

Wemple, S. H.

K. Nassau and S. H. Wemple, "Material dispersion slope in optical-fibre waveguides," Electron. Lett. 18, 450-451 (1982).
[CrossRef]

S. H. Wemple, "Material dispersion in optical fibers," Appl. Opt. 18, 31-35 (1979).
[CrossRef] [PubMed]

S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
[CrossRef]

S. H. Wemple and M. Di Domenico, "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 93.

Yumashev, K. V.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

Zapalova, S. S.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

Zarzycki, J.

J. Zarzycki, Glass and the Vitreous State (Cambridge U. Press, 1991).

Zhilin, A. A.

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

Zhilinskaya, E. A.

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Petricevic, S. K. Gayen, and R. R. Alfano, "Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?," Appl. Phys. Lett. 53, 2590-2592 (1988).
[CrossRef]

Chem. Phys. Lett. (1)

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, "Oxidation state and local coordination of chromium dopant in soda-lime-silicate and calcium-aluminate glasses," Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Electron. Lett. (2)

H. Poignant, "Dispersive and scattering properties of a ZrF4 based glass," Electron. Lett. 17, 973-974 (1981).
[CrossRef]

K. Nassau and S. H. Wemple, "Material dispersion slope in optical-fibre waveguides," Electron. Lett. 18, 450-451 (1982).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

G. S. Rao and N. Veeraiah, "Influence of Cr33+ ions on the structure and certain physical properties of PbO-As2O3 glasses," Eur. Phys. J. Appl. Phys. 16, 11-22 (2001).
[CrossRef]

Glass. Sci. Technol. (1)

D. Godeke, M. Muller, and C. Russel, "Thermal radiation of chromium-doped glass melts," Glass. Sci. Technol. 47, 277-282 (2001).

J. Am. Ceram. Soc. (1)

D. Huang, C. H. Drummond, J. Wang, and R. D. Blume, "Incorporation of chromium(III) and chromium(VI) oxides in a simulated basaltic, industrial waste glass-ceramic," J. Am. Ceram. Soc. 87, 2047-2052 (2004).
[CrossRef]

J. Eur. Ceram. Soc. (1)

G. Gavriliu, "Thermal expansion and characteristic points of −NaNa2O-SiONa2 glass with added oxides," J. Eur. Ceram. Soc. 22, 1375-1379 (2002).
[CrossRef]

J. Non-Cryst. Solids (4)

S. Hirota and T. Izumitani, "Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses," J. Non-Cryst. Solids 29, 109-117 (1978).
[CrossRef]

O. Güldal and C. Apak, "A study on Cr3+/Cr6+ equilibria in industrial emerald green glasses," J. Non-Cryst. Solids 38-39, 251-256 (1986).

G. Fuxi, D. He, and L. Huiming, "Paramagnetic resonance study on transition metal ions in phosphate, fluorophosphate and fluoride glasses. Part I: Cr3+ and Mo3+," J. Non-Cryst. Solids 52, 135-141 (1985).

A. M. Malyarevich, Yu. V. Volk, K. V. Yumashev, V. K. Pavlovskii, S. S. Zapalova, O. S. Dymshits, and A. A. Zhilin, "Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass," J. Non-Cryst. Solids 351, 3551-3555 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. L. Kanth, B. V. Raghavaiah, B. Appa Rao, and N. Veeraiah, "Spectroscopic investigations on ZnF2-MO-TeO2 (MO=ZnO, CdO and PbO) glasses doped with chromium ions," J. Quant. Spectrosc. Radiat. Transfer 90, 97-113 (2005).
[CrossRef]

Mater. Lett. (1)

C. Dayanand, G. Bhikshamaiah, and M. Salagram, "IR and optical properties of PbO glass containing a small amount of silica," Mater. Lett. 23, 309-315 (1995).
[CrossRef]

Opt. Commun. (1)

M. A. Khashan and A. M. El-Naggar, "A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab," Opt. Commun. 174, 445-453 (2000).
[CrossRef]

Opt. Fiber Technol. (1)

E. F. Chillcce, E. Rodriguez, A. A. R. Neves, W. C. Moreira, C. L. Cersar, and L. C. Barbosa, "Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band," Opt. Fiber Technol. 12, 185-195 (2006).
[CrossRef]

Opt. Mater. (2)

X. Feng and S. Tanabe, "Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses," Opt. Mater. 20, 63-72 (2002).
[CrossRef]

A. Aboukaïs, L. D. Bogomolova, E. Cattaruzza, A. A. Deshkovskaya, N. A. Krasilnikova, S. A. Prushinsky, and E. A. Zhilinskaya, "Study of chromium states in silica glass implanted with Cr+ ions to high fluences," Opt. Mater. 22, 177-185 (2003).
[CrossRef]

Phys. Rev. (1)

T. H. Maiman, R. H. Hoskins, I. T. D'Haenens, C. K. Aswa, and V. Evtuhov, "Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby," Phys. Rev. 123, 1151-1157 (1961).
[CrossRef]

Phys. Rev. B (2)

S. H. Wemple and M. Di Domenico, "Behavior of the electronic dielectric constant in covalent and ionic materials," Phys. Rev. B 3, 1338-1351 (1971).
[CrossRef]

S. H. Wemple, "Refractive-index behavior of amorphous semiconductors and glasses," Phys. Rev. B 7, 3767-3777 (1973).
[CrossRef]

Physica (1)

D. K. Durga and N. Veeraiah, "Physical properties of ZnF<2sub>-As<2sub>O<3sub>-TeO<2sub> glasses doped with Cr3+ ions," Physica B 324, 127-141 (2002).
[CrossRef]

Rev. Nuovo Cimento (1)

V. Lucarini, F. Bassani, K. Peiponen, and J. J. Saarinen, "Dispersion theory and sum rules in linear and nonlinear optics," Rev. Nuovo Cimento 26, 1-120 (2003).

Thermochim. Acta (1)

H. Darwish, S. N. Salama, and S. M. Salman, "Contribution of germanium dioxide to the thermal expansion characteristics of some borosilicate glasses and their corresponding glass-ceramics," Thermochim. Acta 374, 129-135 (2001).
[CrossRef]

Other (4)

J. Zarzycki, Glass and the Vitreous State (Cambridge U. Press, 1991).

A. Paul, Chemistry of Glasses (Chapman & Hall, 1982).
[CrossRef]

R. W. Ditchburn, Light (Dover, 1991), p. 457.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Transmission spectra of the LAS glasses doped with various chromium ions.

Fig. 2
Fig. 2

(Color online) Reflection spectra of the chromium-doped LAS glasses.

Fig. 3
Fig. 3

(Color online) Evaluated refractive index versus wavelength for different glass compositions.

Fig. 4
Fig. 4

(Color online) Extinction coefficient of the different glass samples versus wavelength.

Fig. 5
Fig. 5

(Color online) Material dispersion of glass versus wavelength.

Fig. 6
Fig. 6

(Color online) Linear thermal expansion coefficient α th versus doping concentration.

Tables (2)

Tables Icon

Table 1 Some Evaluated Glass Parameters

Tables Icon

Table 2 Other Optical Parameters of the Glass Systems

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

V m = i M i / D .
E x ( z ) = E o exp ( 2 π k z / λ ) exp [ i ( ω t 2 π n z / λ ) ] ,
n = [ 1 + R s 1 R s + 4 R s ( 1 R s ) 2 k 2 ] ,
k = ( λ / 4 π d ) ln η .
n 2 = 1 + i = 0 j = i + 1 a i j ( λ λ i j ) 2 1 ( λ λ i j λ i j λ ) 2 + 1 Q i j 2 ,
n 2 = 1 + j = i + 1 a i j 1 ( λ i j / λ ) 2 ,
n = A + B λ 2 ,
A = 1 + j = i + 1 a i j , B = j = i + 1 a i j λ ij 2 .
ε r ( ω ) = n 2 k 2 = 1 + 4 π e 2 m Ω z S o ( Z ¯ ) ω C V a ( Z ¯ ) ω 2 ,
n 2 ( ħ ω ) = 1 + E d E o E o ( ħ ω ) 2 ,
n 2 1 = E d E o / ( E o 2 E 2 ) E l 2 / E 2 ,
n 2 1 = E d / E o E l 2 / E 2 .
E d = β N c Z a N e ,
n 2 1 = ( e 2 / π m c 2 ) N 1 S o / ( 1 / λ o 2 1 / λ 2 ) ,
( n 2 1 ) / ( n 2 1 ) = 1 ( λ o / λ ) 2 ,
n 2 1 = ( S o λ o 2 ) / ( 1 λ o 2 / λ 2 ) ,
S o = ( n 2 - 1 ) / λ o 2 .
M ( λ ) = λ c ( d 2 n d λ 2 ) .
M ( λ ) = 1.54 × 10 4 ( E d / E o 3 ) / ( n λ 3 ) 2.17 × 10 3 E l 2 λ / n ,
ps ( nm / km ) .
λ c = 1.63 ( E d / E o 3 E l 2 ) 1 / 4 .
α th = ( Δ L / L ) ( 1 / Δ T ) ,

Metrics