Abstract

We describe the concept of a super compact diffractive imaging spectrometer, with optical components a few millimeters across in all dimensions, capable of detecting optical fluorescence spectra within the entire visible spectral range from 400nm to 700nm with resolution of the order of 2 nm. In addition, the proposed spectrometer is capable of working simultaneously with multiple, up to 35, independent input optical channels. A specially designed diffractive optical element integrated with a planar optical waveguide is the key component of the proposed device. In the preliminary experimental tests, a uniform waveguide grating with a microlens was used to mimic operation of the diffractive optical element. A microspectrometer with optical components measured below 1 cm in all dimensions covers the spectral range from 450nm to 650nm and shows a spectral resolution of 0.5nm at wavelengths close to 514nm and 633nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Bacon, Y. Mattley, and R. DeFrece, "Miniature spectroscopic instrumentation: application to biology and chemistry," Rev. Sci. Instrum. 75, 1-16 (2004).
    [CrossRef]
  2. U. Gustafsson, S. Palsson, and S. Svanberg, "Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and integrated spectrometer," Rev. Sci. Instrum. 71, 3004-3006 (2000).
    [CrossRef]
  3. S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
    [CrossRef] [PubMed]
  4. C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).
  5. L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
    [CrossRef] [PubMed]
  6. L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
    [CrossRef]
  7. T. N. Woods, R. T. Wrigley III, G. J. Rottman, and R. E. Harig, "Scattered-light properties of diffraction gratings," Appl. Opt. 33, 4273-4385 (1994).
    [CrossRef] [PubMed]
  8. S. Traut and H. P. Herzig, "Holographically recorded gratings on microlenses for a miniaturized spectrometer array," Opt. Eng. 39, 290-298 (2000).
    [CrossRef]
  9. S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array," J. Mod. Opt. 47, 2391-2397 (2000).
    [CrossRef]
  10. M. Rossi and T. Hessler, "Stray-light effects of diffractive beam-shaping elements in optical microsystems," Appl. Opt. 38, 3068-3076 (1999).
    [CrossRef]
  11. Descripton of compact optical spectrometers developed by Ocean Optics, Inc., is available online at http://www.oceanoptics.com/products.asp.
  12. Description of compact optical spectrometers developed by StellarNet, Inc., is available online at http://www.stellarnet-inc.com/products.htm.
  13. Description of compact optical spectrometers developed by Spectro-Solutions is available online at http://www.spectrosolutions.com.
  14. Description of compact optical spectrometers developed by Ahura Corporation is available online at http://www.ahuracorp.com.
  15. R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
    [CrossRef]
  16. D. Sander and Jorg Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sensors Actuators A 88, 1-9 (2001).
    [CrossRef]
  17. S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
    [CrossRef]
  18. H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
    [CrossRef]
  19. P. Cheben, I. Powell, S. Janz, and D. X. Xu, "Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating," Opt. Lett. 30, 1824-1826 (2005).
    [CrossRef] [PubMed]

2005

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

P. Cheben, I. Powell, S. Janz, and D. X. Xu, "Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating," Opt. Lett. 30, 1824-1826 (2005).
[CrossRef] [PubMed]

2004

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

C. P. Bacon, Y. Mattley, and R. DeFrece, "Miniature spectroscopic instrumentation: application to biology and chemistry," Rev. Sci. Instrum. 75, 1-16 (2004).
[CrossRef]

2003

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

2001

D. Sander and Jorg Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sensors Actuators A 88, 1-9 (2001).
[CrossRef]

2000

U. Gustafsson, S. Palsson, and S. Svanberg, "Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and integrated spectrometer," Rev. Sci. Instrum. 71, 3004-3006 (2000).
[CrossRef]

S. Traut and H. P. Herzig, "Holographically recorded gratings on microlenses for a miniaturized spectrometer array," Opt. Eng. 39, 290-298 (2000).
[CrossRef]

S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array," J. Mod. Opt. 47, 2391-2397 (2000).
[CrossRef]

1999

1994

Andreasson, M.

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

Andreasson-Engels, A.

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

Bacon, C. P.

C. P. Bacon, Y. Mattley, and R. DeFrece, "Miniature spectroscopic instrumentation: application to biology and chemistry," Rev. Sci. Instrum. 75, 1-16 (2004).
[CrossRef]

Bhalotra, S. R.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

Bisson, I.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Black, K. L.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Butte, P. V.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Cheben, P.

DeFrece, R.

C. P. Bacon, Y. Mattley, and R. DeFrece, "Miniature spectroscopic instrumentation: application to biology and chemistry," Rev. Sci. Instrum. 75, 1-16 (2004).
[CrossRef]

Demos, S. G.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Gandour-Edwards, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Gustafsson, U.

U. Gustafsson, S. Palsson, and S. Svanberg, "Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and integrated spectrometer," Rev. Sci. Instrum. 71, 3004-3006 (2000).
[CrossRef]

Harig, R. E.

Hench, L. L.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Herzig, H. P.

S. Traut and H. P. Herzig, "Holographically recorded gratings on microlenses for a miniaturized spectrometer array," Opt. Eng. 39, 290-298 (2000).
[CrossRef]

S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array," J. Mod. Opt. 47, 2391-2397 (2000).
[CrossRef]

Hessler, T.

Janz, S.

Jell, G.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Jo, J. A.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Klinteberg, C.

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

Knipp, D.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

Kung, H. L.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

Marcu, L.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Mattley, Y.

C. P. Bacon, Y. Mattley, and R. DeFrece, "Miniature spectroscopic instrumentation: application to biology and chemistry," Rev. Sci. Instrum. 75, 1-16 (2004).
[CrossRef]

Miller, D. A. B.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

Muller, Jorg

D. Sander and Jorg Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sensors Actuators A 88, 1-9 (2001).
[CrossRef]

Nishihara, H.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Nishio, K.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Notingher, L.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Notingher, P. L.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Okano, M.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Okayama, F.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Palsson, S.

U. Gustafsson, S. Palsson, and S. Svanberg, "Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and integrated spectrometer," Rev. Sci. Instrum. 71, 3004-3006 (2000).
[CrossRef]

Pikul, B. K.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Polak, J. M.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Powell, I.

Ramsamooj, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Rossi, M.

S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array," J. Mod. Opt. 47, 2391-2397 (2000).
[CrossRef]

M. Rossi and T. Hessler, "Stray-light effects of diffractive beam-shaping elements in optical microsystems," Appl. Opt. 38, 3068-3076 (1999).
[CrossRef]

Rottman, G. J.

Sander, D.

D. Sander and Jorg Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sensors Actuators A 88, 1-9 (2001).
[CrossRef]

Sandstrom, O.

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

Sasaki, T.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Satoh, K.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Shiroshita, K.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Stevens, M. M.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Stiebig, H.

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

Svanberg, S.

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

U. Gustafsson, S. Palsson, and S. Svanberg, "Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and integrated spectrometer," Rev. Sci. Instrum. 71, 3004-3006 (2000).
[CrossRef]

Thompson, R. C.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Traut, S.

S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array," J. Mod. Opt. 47, 2391-2397 (2000).
[CrossRef]

S. Traut and H. P. Herzig, "Holographically recorded gratings on microlenses for a miniaturized spectrometer array," Opt. Eng. 39, 290-298 (2000).
[CrossRef]

Tsigkou, O.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Ura, S.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

White, R. D.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

Woods, T. N.

Wrigley, R. T.

Xu, D. X.

Yong, W. H.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Yotsuya, T.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

App. Opt.

S. Ura, F. Okayama, K. Shiroshita, K. Nishio, T. Sasaki, H. Nishihara, T. Yotsuya, M. Okano, and K. Satoh, "Planar reflection grating lens for compact spectroscopic imaging system," App. Opt. 42, 175-180 (2003).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

R. F. Wolffenbuttel, "State-of-the-art in integrated optical microspectrometers," IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

J. Biomed. Opt.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004).
[CrossRef] [PubMed]

J. Mod. Opt.

S. Traut, M. Rossi, and H. P. Herzig, "Replicated arrays of hybrid elements for application in a low-cost micro-spectrometer array," J. Mod. Opt. 47, 2391-2397 (2000).
[CrossRef]

J. Molec. Struc.

L. Notingher, G. Jell, P. L. Notingher, I. Bisson, O. Tsigkou, J. M. Polak, M. M. Stevens, and L. L. Hench, "Multivariate analysis of Raman spectra for in vitro noninvasive studies of living cells," J. Molec. Struc. 744, 179-185 (2005).
[CrossRef]

Opt. Eng.

S. Traut and H. P. Herzig, "Holographically recorded gratings on microlenses for a miniaturized spectrometer array," Opt. Eng. 39, 290-298 (2000).
[CrossRef]

Opt. Lett.

Photochem. Photobiol.

L. Marcu, J. A. Jo, P. V. Butte, W. H. Yong, B. K. Pikul, K. L. Black, and R. C. Thompson, "Fluorescence lifetime spectroscopy of glioblastoma multiforme," Photochem. Photobiol. 80, 98-103 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

C. Klinteberg, M. Andreasson, O. Sandstrom, A. Andreasson-Engels, and S. Svanberg, "Compact medical fluorosensor for minimally invasive tissue characterization," Rev. Sci. Instrum. 76, 034303 (2005).

C. P. Bacon, Y. Mattley, and R. DeFrece, "Miniature spectroscopic instrumentation: application to biology and chemistry," Rev. Sci. Instrum. 75, 1-16 (2004).
[CrossRef]

U. Gustafsson, S. Palsson, and S. Svanberg, "Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and integrated spectrometer," Rev. Sci. Instrum. 71, 3004-3006 (2000).
[CrossRef]

Sensors Actuators A

D. Sander and Jorg Muller, "Self-focusing phase transmission grating for an integrated optical microspectrometer," Sensors Actuators A 88, 1-9 (2001).
[CrossRef]

H. Stiebig, D. Knipp, S. R. Bhalotra, H. L. Kung, and D. A. B. Miller, "Interferometric sensor for spectral imaging," Sensors Actuators A 120, 110-114 (2005).
[CrossRef]

Other

Descripton of compact optical spectrometers developed by Ocean Optics, Inc., is available online at http://www.oceanoptics.com/products.asp.

Description of compact optical spectrometers developed by StellarNet, Inc., is available online at http://www.stellarnet-inc.com/products.htm.

Description of compact optical spectrometers developed by Spectro-Solutions is available online at http://www.spectrosolutions.com.

Description of compact optical spectrometers developed by Ahura Corporation is available online at http://www.ahuracorp.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Side and (b) top view of the proposed diffractive imaging spectrometer. Particular dimensions are given to illustrate the concrete design described in the text. A smaller or larger package size is possible depending on the desirable spectral range and resolution.

Fig. 2
Fig. 2

(a) Central part ( 25 μm × 25 μm ) of the diffractive optical element and (b) simulated intensity distribution at the image sensor. The scale is in micrometers.

Fig. 3
Fig. 3

Schematic image of the grooves forming the diffractive optical element (shadowed) and appropriate phase mask (dashed curves).

Fig. 4
Fig. 4

Scheme of the experiment to test the performance of the microspectrometer.

Fig. 5
Fig. 5

(a) Intensity distribution along the central row of pixels. The inset shows a snapshot taken by the image sensor. (b) The noise floor due to the stray-light scattering.

Fig. 6
Fig. 6

Fluorescence of Rhodamine-575 measured using the microspectrometer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L M λ 0 n m = λ 0 2 δλ n m .
s < H cos θ × n m n × δλ λ 0 .

Metrics