Abstract

A simple intrinsic Fabry–Perot interferometric (IFPI) sensor is developed. The sensor is fabricated by two micro air gaps as reflective mirrors in a fiber to form a Fabry–Perot cavity. Theoretical and experimental studies of the sensor are described. Experimental results show that high resolution and high sensitivity can be achieved. Two structures of micro-air-gap-based IFPI sensors offer more applications than other IFPI sensors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Lee and H. F. Taylor, "Optical-fiber Fabry-Perot embedded sensor," Opt. Lett. 14, 1225-1227 (1991).
    [CrossRef]
  2. H. Singh and J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities." J. Lightwave Technol. 15, 647-653 (1997).
    [CrossRef]
  3. W.-H. Tsai and C.-J. Lin, "A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor." J. Lightwave Technol. 19, 682-686 (2001).
    [CrossRef]
  4. F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).
  5. A. Klini, D. E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, "Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle," J. Lightwave Technol. 16, 1220-1227 (1998).
    [CrossRef]
  6. A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
    [CrossRef]
  7. S. I. Hosain, Y. Lacroute, and J. P. Goudonnet, "A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope," Microwave Opt. Technol. Lett. 13, 243-245 (1996).
    [CrossRef]
  8. X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).
  9. R. C. Gauthier, M. Friesen, T. Gerrard, W. Hassouneh, P. Koziorowski, D. Moore, K. Oprea, and S. Uttamalingam, "Self-centering of a ball lens by laser trapping: fiber-ball-fiber coupling analysis," Appl. Opt. 42, 1610-1619 (2003).
    [CrossRef] [PubMed]
  10. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), p. 119.
  11. N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, 1995), p. 59.
  12. D. Marcuese, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-717 (1977).
  13. B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
    [CrossRef]
  14. F. Shen and A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers," Appl. Opt. 44, 5206-5214 (2005).
    [CrossRef] [PubMed]

2005

2004

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

2003

R. C. Gauthier, M. Friesen, T. Gerrard, W. Hassouneh, P. Koziorowski, D. Moore, K. Oprea, and S. Uttamalingam, "Self-centering of a ball lens by laser trapping: fiber-ball-fiber coupling analysis," Appl. Opt. 42, 1610-1619 (2003).
[CrossRef] [PubMed]

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

2001

1998

A. Klini, D. E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, "Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle," J. Lightwave Technol. 16, 1220-1227 (1998).
[CrossRef]

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

1997

H. Singh and J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities." J. Lightwave Technol. 15, 647-653 (1997).
[CrossRef]

1996

S. I. Hosain, Y. Lacroute, and J. P. Goudonnet, "A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope," Microwave Opt. Technol. Lett. 13, 243-245 (1996).
[CrossRef]

1995

N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, 1995), p. 59.

1991

1977

D. Marcuese, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-717 (1977).

1975

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), p. 119.

Bourillot, D. E.

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), p. 119.

Chen, X.

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

Cooper, K.

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

Duan, Y.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Emonin, S.

Friesen, M.

Gauthier, R. C.

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), p. 119.

Gerrard, T.

Goudonnet, J. P.

A. Klini, D. E. Bourillot, S. Emonin, P. Papadopoulos, J. P. Goudonnet, and G. Kotrotsios, "Reproducible optical fiber tips for photon scanning tunneling microscopy with very small (<5°) cone angle," J. Lightwave Technol. 16, 1220-1227 (1998).
[CrossRef]

S. I. Hosain, Y. Lacroute, and J. P. Goudonnet, "A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope," Microwave Opt. Technol. Lett. 13, 243-245 (1996).
[CrossRef]

Hassouneh, W.

Hosain, S. I.

S. I. Hosain, Y. Lacroute, and J. P. Goudonnet, "A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope," Microwave Opt. Technol. Lett. 13, 243-245 (1996).
[CrossRef]

Hou, W.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Huang, Z.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Kashima, N.

N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, 1995), p. 59.

Klini, A.

Kotrotsios, G.

Koziorowski, P.

Lacroute, Y.

S. I. Hosain, Y. Lacroute, and J. P. Goudonnet, "A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope," Microwave Opt. Technol. Lett. 13, 243-245 (1996).
[CrossRef]

Lambelet, P.

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

Lee, C. E.

Lin, C.-J.

Marcuese, D.

D. Marcuese, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-717 (1977).

Marquis-Weible, F.

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

May, R. G.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Moore, D.

Oprea, K.

Papadopoulos, P.

Peng, W.

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Pfeffer, M.

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

Philipona, C.

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

Pickrell, G.

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Qi, B.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Sayah, A.

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

Shen, F.

F. Shen and A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers," Appl. Opt. 44, 5206-5214 (2005).
[CrossRef] [PubMed]

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

Singh, H.

H. Singh and J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities." J. Lightwave Technol. 15, 647-653 (1997).
[CrossRef]

Sirkis, J. S.

H. Singh and J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities." J. Lightwave Technol. 15, 647-653 (1997).
[CrossRef]

Taylor, H. F.

Tsai, W.-H.

Uttamalingam, S.

Wang, A.

F. Shen and A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers," Appl. Opt. 44, 5206-5214 (2005).
[CrossRef] [PubMed]

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Wang, Z.

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

Xiao, H.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Xu, J.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Zhang, P.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Zhang, Y.

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

Appl. Opt.

Bell Syst. Tech. J.

D. Marcuese, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J. 56, 703-717 (1977).

J. Lightwave Technol.

Microwave Opt. Technol. Lett.

S. I. Hosain, Y. Lacroute, and J. P. Goudonnet, "A simple low-cost highly reproducible method of fabricating optical fiber tips for a photon scanning tunneling microscope," Microwave Opt. Technol. Lett. 13, 243-245 (1996).
[CrossRef]

Opt. Eng.

B. Qi, G. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Hou, H. Xiao, R. G. May, and A. Wang, "Novel data processing techniques for dispersive white light interferometer," Opt. Eng. 42, 3165-3171 (2003).
[CrossRef]

Opt. Lett.

Ultramicroscopy

A. Sayah, C. Philipona, P. Lambelet, M. Pfeffer, and F. Marquis-Weible, "Fiber tips for scanning near-field optical microscopy fabricated by normal and reverse etching," Ultramicroscopy 72, 59 (1998).
[CrossRef]

Other

F. Shen, W. Peng, K. Cooper, G. Pickrell, and A. Wang, "UV-induced intrinsic Fabry-Perot interferometric fiber sensors," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 47-56 (2004).

X. Chen, F. Shen, Y. Zhang, Z. Wang, and A. Wang, "A novel Fabry-Perot fiber-optic sensor with multiple applications," in Sensors for Harsh Environments, A. Wang, ed., Proc. SPIE 5590, 111-121 (2004).

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), p. 119.

N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech House, 1995), p. 59.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(Color online) Differential wet chemical etching (Ref. 8) (a) before etching (b) after etching, (c) end face of the etched fiber.

Fig. 2
Fig. 2

(Color online) Fusion splice (a) before splicing, (b) after splicing.

Fig. 3
Fig. 3

(Color online) Two IFPI structures.

Fig. 4
Fig. 4

(Color online) Schematic of the sensor.

Fig. 5
Fig. 5

Possible shapes of the air gap, (a) when R f is a fixed value; (b) when d is a fixed value.

Fig. 6
Fig. 6

(Color online) Power transmission coefficient when R f is fixed.

Fig. 7
Fig. 7

Power transmission coefficient when d is fixed.

Fig. 8
Fig. 8

(Color online) Multiple-reflection model.

Fig. 9
Fig. 9

(Color online) Spectrum comparison between experiment and theory.

Fig. 10
Fig. 10

Schematic of the sensor system.

Fig. 11
Fig. 11

(Color online) Temperature measurement setup.

Fig. 12
Fig. 12

Temperature measurement results.

Fig. 13
Fig. 13

Difference between the readouts of the optical sensor and the thermocouple.

Fig. 14
Fig. 14

(Color online) Strain measurement setup.

Fig. 15
Fig. 15

(Color online) (a) Spectrum and (b) results of the FFT of a multiplexed sensor.

Fig. 16
Fig. 16

Strain measurement results by optical sensors.

Fig. 17
Fig. 17

Standard deviation of strain measurement.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

R b = ( R f 2 + d 2 4 ) / d .
M Trans = [ 1 d 0 1 ] ,
M refr = [ 1 0 - ( n 2 - n 1 ) / n 2 R n 1 / n 2 ] ,
M = M refr̲right M Trans M refr̲left .
1 q ( z ) = 1 R w ( z ) - j λ π W 2 ( z ) ,
M = [ A B C D ] ,
q out ( z ) = A q in ( z ) + B C q in ( z ) + D ,
T = ( 2 W in W out W in 2 + W out 2 ) 2 .
E = E 0 [ R 1 + η 1 2 ( 1 - R 1 ) 2 R 2 e - j 2 φ ] ,
φ = 4 π n L λ ,
I = E × E * = E 0 2 R 1 2 + R 2 2 ( 1 - R 1 ) 4 η 1 4 + 2 R 1 R 2 ( 1 - R 1 ) 2 ×   η 1 2 cos ( 2 φ ) .
OPD rough = λ 1 λ 2 2 ( λ 1 - λ 2 ) ,
OPD = ( m 2 π - φ 0 ) λ m 4 π = K m 2 λ m ,
ε 1 , 2 = 3 D 1 , 2 t δ 2 D 3 ,
ΔOPD OPD = ( 1 - P e ) ε ,

Metrics