Abstract

The dynamics of terahertz radiation from InAs were investigated by the ensemble Monte Carlo simulation method. Our simulations indicated that under high-intensity excitation it is the ratio of carrier screening to the carrier-polar optical phonon scattering that has an obvious influence in high-frequency components of terahertz pulses; that is, the amplitudes of high-frequency spectra are reduced with increased excitation intensity. Our calculated results qualitatively reproduce recently published experimental data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
    [CrossRef]
  2. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  3. Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
    [CrossRef]
  4. M. Schall and P. U. Jepsen, "Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy," Opt. Lett. 25, 13-15 (2000).
    [CrossRef]
  5. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
    [CrossRef]
  6. T.-I. Jeon and D. R. Grischkowsky, "Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon," Appl. Phys. Lett. 72, 2259-2261 (1998).
    [CrossRef]
  7. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, "T-ray imaging," Opt. Lett. 22, 904-906 (1997).
    [CrossRef] [PubMed]
  8. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
    [CrossRef]
  9. G.-R. Lin and C.-L. Pan, "Characterization of optically-excited terahertz radiation from arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).
  10. R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
    [CrossRef]
  11. M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
    [CrossRef]
  12. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
    [CrossRef]
  13. C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
    [CrossRef]
  14. J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
    [CrossRef]
  15. A. J. Taylor, P. K. Benicewicz, and S. M. Young, "Modeling of femtosecond electromagnetic pulses from large-aperture photoconductors," Opt. Lett. 18, 1340-1342 (1993).
    [CrossRef] [PubMed]
  16. C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
    [CrossRef]
  17. D.-F. Liu and J.-Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from a large-aperture photoconductive antenna," J. Lumin (to be published).
  18. D.-F. Liu and J.-Y. Qin, "Monte Carlo simulation of THz-pulse generation from semiconductor surface," Chin. J. Electron. 32, 1314-1317 (2004).
  19. "Calculation parameters for InAs," http://www.ioffe.rssi.ru.
  20. W. Fawcett, A. D. Boardman, and S. Swain, "Monte Carlo determination of electron transport properties in gallium arsenide," J. Phys. Chem. Solids 31, 1963-1990 (1970).
    [CrossRef]

2004 (3)

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

D.-F. Liu and J.-Y. Qin, "Monte Carlo simulation of THz-pulse generation from semiconductor surface," Chin. J. Electron. 32, 1314-1317 (2004).

2002 (2)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

2001 (2)

G.-R. Lin and C.-L. Pan, "Characterization of optically-excited terahertz radiation from arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

2000 (2)

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

M. Schall and P. U. Jepsen, "Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy," Opt. Lett. 25, 13-15 (2000).
[CrossRef]

1998 (1)

T.-I. Jeon and D. R. Grischkowsky, "Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon," Appl. Phys. Lett. 72, 2259-2261 (1998).
[CrossRef]

1997 (2)

D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, "T-ray imaging," Opt. Lett. 22, 904-906 (1997).
[CrossRef] [PubMed]

Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

1993 (1)

1992 (2)

J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

1990 (1)

1983 (1)

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

1970 (1)

W. Fawcett, A. D. Boardman, and S. Swain, "Monte Carlo determination of electron transport properties in gallium arsenide," J. Phys. Chem. Solids 31, 1963-1990 (1970).
[CrossRef]

Auston, D. H.

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Beigang, R.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Benicewicz, P. K.

Boardman, A. D.

W. Fawcett, A. D. Boardman, and S. Swain, "Monte Carlo determination of electron transport properties in gallium arsenide," J. Phys. Chem. Solids 31, 1963-1990 (1970).
[CrossRef]

Boivin, L.

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Darrow, J. T.

J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Daview, A. G.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Dowd, A.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Driver, R.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Fattinger, C.

Fawcett, W.

W. Fawcett, A. D. Boardman, and S. Swain, "Monte Carlo determination of electron transport properties in gallium arsenide," J. Phys. Chem. Solids 31, 1963-1990 (1970).
[CrossRef]

Gotoh, H.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Grischkowsky, D.

Grischkowsky, D. R.

T.-I. Jeon and D. R. Grischkowsky, "Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon," Appl. Phys. Lett. 72, 2259-2261 (1998).
[CrossRef]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Hirayama, Y.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Hunsche, S.

Jacoboni, C.

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. R. Grischkowsky, "Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon," Appl. Phys. Lett. 72, 2259-2261 (1998).
[CrossRef]

Jepsen, P. U.

Johnston, M. B.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Kadoya, Y.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Keiding, S.

Khazan, M.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Kusuda, K.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Kuzel, P.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

Lin, G.-R.

G.-R. Lin and C.-L. Pan, "Characterization of optically-excited terahertz radiation from arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

Linfield, E. H.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Liu, D.-F.

D.-F. Liu and J.-Y. Qin, "Monte Carlo simulation of THz-pulse generation from semiconductor surface," Chin. J. Electron. 32, 1314-1317 (2004).

D.-F. Liu and J.-Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from a large-aperture photoconductive antenna," J. Lumin (to be published).

Mittleman, D. M.

Miyashita, S.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Morse, J. D.

J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Nemec, H.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

Nuss, M. C.

Pan, C.-L.

G.-R. Lin and C.-L. Pan, "Characterization of optically-excited terahertz radiation from arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

Pashkin, A.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

Qin, J.-Y.

D.-F. Liu and J.-Y. Qin, "Monte Carlo simulation of THz-pulse generation from semiconductor surface," Chin. J. Electron. 32, 1314-1317 (2004).

D.-F. Liu and J.-Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from a large-aperture photoconductive antenna," J. Lumin (to be published).

Reggiani, L.

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Schall, M.

Schnull, S.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

Swain, S.

W. Fawcett, A. D. Boardman, and S. Swain, "Monte Carlo determination of electron transport properties in gallium arsenide," J. Phys. Chem. Solids 31, 1963-1990 (1970).
[CrossRef]

Tani, M.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Taylor, A. J.

Van Exter, M.

Wallenstein, R.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Weiss, C.

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Whittaker, D. M.

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Wilke, I.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

Wu, Q.

Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

Yamanishi, M.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Yano, R.

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

Young, S. M.

Zhan, X.-C.

J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Zhang, X.-C.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

Appl. Phys. B (1)

G.-R. Lin and C.-L. Pan, "Characterization of optically-excited terahertz radiation from arsenic-ion-implanted GaAs," Appl. Phys. B 72, 151-155 (2001).

Appl. Phys. Lett. (3)

C. Weiss, R. Wallenstein, and R. Beigang, "Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces," Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Q. Wu and X.-C. Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

T.-I. Jeon and D. R. Grischkowsky, "Observation of a Cole-Davidson type complex conductivity in the limit of very low carrier densities in doped silicon," Appl. Phys. Lett. 72, 2259-2261 (1998).
[CrossRef]

Chin. J. Electron. (1)

D.-F. Liu and J.-Y. Qin, "Monte Carlo simulation of THz-pulse generation from semiconductor surface," Chin. J. Electron. 32, 1314-1317 (2004).

IEEE J. Quantum Electron. (1)

J. T. Darrow, X.-C. Zhan, D. H. Auston, and J. D. Morse, "Saturation properties of large-aperture photoconductor antennas," IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

J. Appl. Phys. (4)

X.-C. Zhang and D. H. Auston, "Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics," J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

R. Yano, H. Gotoh, Y. Hirayama, S. Miyashita, Y. Kadoya, K. Kusuda, and M. Yamanishi, "Low-frequency spectral enhancement of THz electromagnetic waves emitted from InAs surface with increased excitation intensity," J. Appl. Phys. 95, 2141-2145 (2004).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, "Study of terahertz radiation from InAs and InSb," J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, "Carrier dynamics in low-temperature grown GaAs studied by THz emission spectroscopy," J. Appl. Phys. 90, 1303-1306 (2001).
[CrossRef]

J. Lumin (1)

D.-F. Liu and J.-Y. Qin, "The effects of optical pump parameters on THz temporal waveforms from a large-aperture photoconductive antenna," J. Lumin (to be published).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

W. Fawcett, A. D. Boardman, and S. Swain, "Monte Carlo determination of electron transport properties in gallium arsenide," J. Phys. Chem. Solids 31, 1963-1990 (1970).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, "Simulation of terahertz generation at semiconductor surfaces," Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials," Rev. Mod. Phys. 55, 645-705 (1983).
[CrossRef]

Semicond. Sci. Technol. (1)

M. B. Johnston, A. Dowd, R. Driver, E. H. Linfield, A. G. Daview, and D. M. Whittaker, "Emission of collimated THz pulses from photo-excited semiconductors," Semicond. Sci. Technol. 19, S449-S451 (2004).
[CrossRef]

Other (1)

"Calculation parameters for InAs," http://www.ioffe.rssi.ru.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

THz temporal waveforms of InAs with pump wavelengths of 1550 and 800 nm .

Fig. 2
Fig. 2

Fast Fourier transforms of THz pulses from InAs (a) with and (b) without consideration of the carrier screening when different optically generated carrier densities are assumed.

Fig. 3
Fig. 3

Temporal THz waveforms from InAs with (dashed curve) and without (solid curve) the carrier-screening effect included. Carrier density and pump wavelength are assumed to be 10 18 cm - 3 and 800 nm , respectively. The dashed and solid curves in the inset are the corresponding spectra with and without carrier screening, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N e , h ( T ) = N e , h ( T - Δ t ) + Δ t G ( T ) ,
j ( t ) = j e ( t ) + j h ( t ) = 1 Vol [ Q e i N e ν i ( t ) + Q h j N h ν j ( t ) ] ,
E rad d dt j ( t ) ,
E s ( z = 0 , t ) = V D ( t ) / d ,
V D = k B T e b - 1 b + 1 ln [ 1 + ( b + 1 ) Δ n n 0 b + p 0 ] ,
n e , h ( z ) = n e , h ( 0 ) exp ( - α z ) ,

Metrics