Abstract

A tunable, ultrafast (100  fs1  ps) laser system generating mid-IR (310μm) and UV∕visible (392417  nm, 785835  nm) radiation is described and its output characterized. The system is designed to explore vibrational dynamics in the condensed phase in a direct, two-pulse, time-resolved manner, using Raman spectroscopy as the probe. To produce vibrational resolution, probe pulses are spectrally narrowed by use of a long doubling crystal. Frequency-resolved optical gating is used to evaluate beam characteristics. An effective method for determining the temporal overlap of the pump and probe pulses for a one-color, 400  nm configuration is illustrated. Representative results from studies of heme and para-nitroaniline vibrational dynamics illustrate the effectiveness of the visible pump–visible probe portion of the system in illuminating fast structure and energy dynamics.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (117)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription