Abstract

We demonstrate that the performance of a periodically poled LiNbO3- (PPLN-) based electro-optic Solc filter is dependent on the duty cycle of the crystal. This may limit the performance of the device for applications such as add–drop filtering and switching, owing to the deterioration of the extinction ratio. It is shown that by adding a retarder to the Solc filter it is possible to improve the extinction ratio; thus the dependence of the filter on the duty cycle can be reduced. Using Jones calculus, we analyzed the effect of a variable retarder that can also be rotated on the extinction ratio. We experimentally observed a 6dB increase in the extinction ratio when we used a half-wavelength retarder.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, "Quasi-phasematched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
    [CrossRef]
  2. M. Yamada and M. Saitoh, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
    [CrossRef]
  3. A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  5. Y. H. Chen and Y. C. Haung, "Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q switch," Opt. Lett. 28, 1460-1462 (2003).
    [CrossRef] [PubMed]
  6. J. Shi, X. Chen, Y. Xia, and Y. Chen, "Polarization control by use of the electro-optic effect in periodically poled lithium niobate," Appl. Opt. 42, 5722-5725 (2003).
    [CrossRef] [PubMed]
  7. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium nibate," Opt. Lett. 28, 2115-2117 (2003).
    [CrossRef] [PubMed]
  8. Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
    [CrossRef]
  9. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), Chap. 5, pp. 121-152.
  10. A. Yariv, Optical Electronics, 4th ed. (Holt, Rinehart & Winston, 1991), Chap. 1, pp. 11-29.
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Subsection 18.2, pp. 713-719.
  12. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  13. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-374 (1984).
    [CrossRef]

2003

2000

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

1997

D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
[CrossRef]

R. L. Byer, "Quasi-phasematched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

1996

M. Yamada and M. Saitoh, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

1984

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Arie, A.

A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.

Burstein, A.

A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.

Byer, R. L.

R. L. Byer, "Quasi-phasematched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

Chen, X.

Chen, X. F.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Chen, Y.

Chen, Y. H.

Chen, Y. L.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Chen, Y. P.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Danielli, A.

A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.

Edwards, G. J.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Fradkin-Kashi, K.

A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.

Haung, Y. C.

Jundt, D. H.

Lawrence, M.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Olier, A.

A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.

Saitoh, M.

M. Yamada and M. Saitoh, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Subsection 18.2, pp. 713-719.

Shi, J.

Shi, J. H.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Subsection 18.2, pp. 713-719.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Xia, Y.

Xia, Y. X.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Yamada, M.

M. Yamada and M. Saitoh, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), Chap. 5, pp. 121-152.

A. Yariv, Optical Electronics, 4th ed. (Holt, Rinehart & Winston, 1991), Chap. 1, pp. 11-29.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), Chap. 5, pp. 121-152.

Zhu, Y.

Zhu, Y. M.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

M. Yamada and M. Saitoh, "Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals," Appl. Phys. Lett. 69, 3659-3661 (1996).
[CrossRef]

J. Nonlin. Opt. Phys. Mater.

R. L. Byer, "Quasi-phasematched nonlinear interactions and devices," J. Nonlin. Opt. Phys. Mater. 6, 549-592 (1997).
[CrossRef]

Opt. Commun.

Y. M. Zhu, X. F. Chen, J. H. Shi, Y. P. Chen, Y. X. Xia, and Y. L. Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Other

A. Arie, A. Burstein, K. Fradkin-Kashi, A. Danielli, and A. Olier, "Dynamic gain equalization based on electro-optic filtering in periodically-poled LiNbO3," in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), paper TUM3.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984), Chap. 5, pp. 121-152.

A. Yariv, Optical Electronics, 4th ed. (Holt, Rinehart & Winston, 1991), Chap. 1, pp. 11-29.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Subsection 18.2, pp. 713-719.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Rotation of polarization angle in a Solc filter. Dotted curves, the polarization of light; dashed curves, axis of the λ / 2 plates.

Fig. 2
Fig. 2

Transmission along the Z axis as a function of wavelength for three values of the applied voltage. The 1.3 cm PPLN crystal has a period of 10.0 µm and is held at 50 °C.

Fig. 3
Fig. 3

Transmission at the Solc filter's center wavelength of 787.24 nm along (a) the Y axis and (b) the Z axis as a function of the number of periods. The PPLN crystal has a period of 10.0 µm and is held at 50 °C, and the applied voltage is 140 V .

Fig. 4
Fig. 4

Transmission at the Solc filter's center wavelength of 787.24 nm along the Y axis as a function of the duty cycle. The 1.3 cm PPLN crystal with a period of 10.0 µm and an applied voltage of 140 V is held at 50 °C.

Fig. 5
Fig. 5

Calculation of (a) the maximum extinction ratio with the corresponding (b) retarder azimuth angle and (c) retardation. The 1.3 cm PPLN crystal with a period of 10.0 µm and an applied voltage of 140 V is held at 50 °C. The optical wavelength is the filter's center wavelength of 787.24 nm .

Fig. 6
Fig. 6

Transmission at the Solc filter's center wavelength of 787.24 nm along the Y axis (a) with and without a λ / 2 plate retarder and (b) the corresponding retarder's required azimuth angle. The 1.3 cm PPLN crystal with a period of 10.0 µm and an applied voltage of 140 V is held at 50 °C.

Fig. 7
Fig. 7

Transmission at a Solc filter center wavelength of 787.24 nm along the Y axis (a) with and without a λ / 4 plate retarder and (b) the corresponding retarder's required azimuth angle. The 1.3 cm PPLN crystal with a period of 10.0 µm and an applied voltage of 140 V is held at 50 °C.

Fig. 8
Fig. 8

Experimental setup of a PPLN-based electro-optic Solc filter.

Fig. 9
Fig. 9

Transmission along the Z axis as a function of wavelength: theoretical (solid curve) versus measured (dotted curve).

Fig. 10
Fig. 10

Calculated (solid curve) and measured (dotted curve) Y-axis normalized transmission versus λ / 2 azimuth angle.

Fig. 11
Fig. 11

Calculated (solid curve) and measured (dotted curve) Y-axis normalized transmission versus λ / 4 azimuth angle.

Tables (1)

Tables Icon

Table 1 Comparison of Theoretical Values and Measured Values of the Electro-Optic Solc Filter

Equations (111)

Equations on this page are rendered with MathJax. Learn more.

LiNbO 3
6 dB
LiNbO 3
r 33
r 51
Nd : YVO 4
π / 2
( λ / 2 )
( λ / 4)
780 nm
λ / 2
± θ
λ / 2
2 θ
3 θ
λ / 2
4 θ
λ / 2
2 θ
λ / 2
λ / 2
2 π n e λ - 2 π n o λ = 2 π Λ ,
n e
n o
η pos–neg - domain = [ 1 n o 2 - r 22 E y 0 0 0 1 n o 2 + r 22 E y ± r 51 E y 0 ± r 51 E y 1 n e 2 ] ,
r 51
r 22
r 51 E y
- r 51 E y
η pos–neg - domain
D = [ 1 n x 2 0 0 0 1 n y 2 0 0 0 1 n z 2 ] ,
n y
n z
k x = 2 Π n x λ , k y = 2 Π n y λ , k z = 2 Π n z λ .
d 1
d 2
M 1 , 2 = [ exp ( i k x d 1 , 2 ) 0 0 0 exp ( i k y d 1 , 2 ) 0 0 0 exp ( i k z d 1 , 2 ) ]
M 1
M 2
V 1 - 1 = V 1 , V 2 - 1 = V 2
T per = V 2 - 1 M 2 V 2 V 1 - 1 M 1 V 1 = V 2 M 2 V 2 V 1 M 1 V 1 ,
T per
T cryst = T per N = ( V 2 M 2 V 2 V 1 M 1 V 1 ) N .
E out = T cryst E in .
( d 1 d 2 )
R = [ 1 0 0 0 cos 2 ψ exp ( - i Γ 2 ) + sin 2 ψ exp ( i Γ 2 ) - i sin Γ 2 sin 2 ψ 0 - i sin Γ 2 sin 2 ψ sin 2 ψ exp ( - i Γ 2 ) + cos 2 ψ exp ( i Γ 2 ) ] ,
E out - final = RE out = RT cryst E in .
( 60 dB )
λ / 2
π / 2
λ /4
λ / 2
λ /4
λ / 2
λ /4
λ / 2
λ / 4
π / 2
λ / 4
π / 2
760 790 nm
84 µm
1.3 cm × 1 mm × 1 mm
10 µm
787.24 nm
0.085 nm
LiNbO 3
λ / 2
λ / 4
λ / 2
λ / 4
λ / 2
λ / 4
λ / 4
λ / 2
12.2 dB
λ / 2
18.2 dB
λ / 4
λ / 2
λ / 4
LiNbO 3
LiNbO 3
Nd : YVO 4
n e
λ / 2
1.3 cm
10.0 µm
787.24 nm
10.0 µm
140 V
787.24 nm
1.3 cm
10.0 µm
140 V
1.3 cm
10.0 µm
140 V
787.24 nm
787.24 nm
λ / 2
1.3 cm
10.0 µm
140 V
787.24 nm
λ / 4
1.3 cm
10.0 µm
140 V
λ / 2
λ / 4

Metrics