Abstract

A parallel demodulation system for extrinsic Fabry–Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).
  2. W. Du, X. Tao, and H. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
    [CrossRef]
  3. H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
    [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  5. Y. Rao and D. A. Jackson, "Recent progress in fibre optic low coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).
    [CrossRef]
  6. J. Jiang, T. Liu, Y. Zhang, L. Liu, Y. Zha, F. Zhang, Y. Wang, and P. Long, "Parallel demodulation system and signal-processing method for EFPI and FBG sensors," Opt. Lett. 30, 604-606 (2005).
    [CrossRef] [PubMed]
  7. M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from fiber Bragg grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
    [CrossRef]
  8. M. Hart, D. G. Vass, and M. L. Begbie, "Fast surface profiling by spectral analysis of white-light interferogram with Fourier transform spectroscopy," Appl. Opt. 37, 1764-1769 (1998).
    [CrossRef]
  9. G. A. Vanasse, Spectrometric Techniques (Academic, 1981), Vol. 2.
  10. R. C. M. Learner, A. P. Thorne, and J. W. Brault, "Ghost and artifacts in Fourier-transform spectrometry," Appl. Opt. 35, 2947-2954 (1996).
    [CrossRef] [PubMed]
  11. J. W. Brault, "New approach to high-precision Fourier transform spectrometer design," Appl. Opt. 35, 2891-2896 (1996).
    [CrossRef] [PubMed]
  12. J. C. Brasunas and G. M. Cushman, "Uniform time-sampling Fourier transform spectroscopy," Appl. Opt. 36, 2206-2210 (1997).
    [CrossRef] [PubMed]

2005 (1)

2002 (1)

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
[CrossRef]

1999 (1)

W. Du, X. Tao, and H. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

1998 (1)

1997 (3)

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

J. C. Brasunas and G. M. Cushman, "Uniform time-sampling Fourier transform spectroscopy," Appl. Opt. 36, 2206-2210 (1997).
[CrossRef] [PubMed]

1996 (3)

1995 (1)

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from fiber Bragg grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

Arya, V.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Bang, H.-J.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
[CrossRef]

Begbie, M. L.

Bhatia, V.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Brasunas, J. C.

Brault, J. W.

Campbell, D.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Claus, R. O.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Cushman, G. M.

D'Alberto, T.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from fiber Bragg grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

Du, W.

W. Du, X. Tao, and H. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Hart, M.

Hong, C.-S.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
[CrossRef]

Jackson, D. A.

Y. Rao and D. A. Jackson, "Recent progress in fibre optic low coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).
[CrossRef]

Jiang, J.

Kang, H.-K.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from fiber Bragg grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

Kim, C.-G.

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Learner, R. C. M.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Liu, L.

Liu, T.

Long, P.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Rao, Y.

Y. Rao and D. A. Jackson, "Recent progress in fibre optic low coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).
[CrossRef]

Sherr, D.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Tam, H.

W. Du, X. Tao, and H. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

Tao, X.

W. Du, X. Tao, and H. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

Thorne, A. P.

Vanasse, G. A.

G. A. Vanasse, Spectrometric Techniques (Academic, 1981), Vol. 2.

Vass, D. G.

Vries, M. J.

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

Wang, Y.

Zha, Y.

Zhang, F.

Zhang, Y.

Appl. Opt. (4)

IEEE Photon. Technol. Lett. (1)

W. Du, X. Tao, and H. Tam, "Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature," IEEE Photon. Technol. Lett. 11, 105-107 (1999).
[CrossRef]

J Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

J. Lightwave Technol. (1)

M. A. Davis and A. D. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from fiber Bragg grating sensors," J. Lightwave Technol. 13, 1289-1295 (1995).
[CrossRef]

Meas. Sci. Technol. (2)

Y. Rao and D. A. Jackson, "Recent progress in fibre optic low coherence interferometry," Meas. Sci. Technol. 7, 981-999 (1996).
[CrossRef]

H.-K. Kang, H.-J. Bang, C.-S. Hong, and C.-G. Kim, "Simultaneous measurement of strain, temperature and vibration frequency using a fibre optic sensor," Meas. Sci. Technol. 13, 1191-1196 (2002).
[CrossRef]

Opt. Lett. (1)

Other (2)

V. Bhatia, D. Campbell, M. J. Vries, D. Sherr, T. D'Alberto, V. Arya, and R. O. Claus, "Grating-based optical fiber sensors for structural analysis," in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 390-399 (1997).

G. A. Vanasse, Spectrometric Techniques (Academic, 1981), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Parallel demodulation system of an EFPI and FBG sensor.

Fig. 2
Fig. 2

Interference fringes in the spatial domain and the corresponding spectrum character in the spectrum domain: (a) EFPI, (b) FBG. FFT, fast Fourier transform.

Fig. 3
Fig. 3

Schematic diagram of the measure and control system used in the parallel demodulation system.

Fig. 4
Fig. 4

Movement analysis of the scanning stage: (a) rectangle-wave signal of the encoder, (b) power spectrum of the speed error.

Fig. 5
Fig. 5

Spectrum demodulation of a FBG: (a) interferogram obtained from the parallel demodulation system, (b) local magnification of (a), (c) calculation spectrum of the FBG.

Fig. 6
Fig. 6

Spectrum demodulation of an ASE light source: (a) interferogram obtained from the parallel demodulation system, (b) calculation spectrum including ghost spectrum, (c) useful spectrum selected from (b), (d) measurement result with Agilent spectrometer.

Fig. 7
Fig. 7

Comparison of FBG wavelength measurement errors by a whole interferogram and a local interferogram: (a) whole interferogram, (b) calculation spectrum of (a), (c) local interferogram selected from (a) with center position offset 65,000 sample points away from zero OPD, (d) calculation spectrum of (c), (e) relationship between measurement error and position offset.

Fig. 8
Fig. 8

Low-coherence demodulation experiment with the parallel demodulation system.

Fig. 9
Fig. 9

Experimental result of strain and temperature measurement.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ( Δ ) = S ( k ) cos ( 2 π k Δ ) d k ,
S ( k ) = I ( Δ ) cos ( 2 π k Δ ) d Δ ,
I ( k , Δ ) = I 1 ( k ) + I 2 ( k ) + 2 I 1 ( k ) I 2 ( k ) cos ( 2 π k Δ ) ,
I 1 ( k ) = p S ( k ) ,
I 2 ( k ) = q S ( k ) ,
I ( k , Δ ) = ( p + q ) S ( k ) + 2 p q S ( k ) cos ( 2 π k Δ ) .
I ( Δ ) = [ ( p + q ) S ( k ) + 2 p q S ( k ) cos ( 2 π k Δ s ) ] cos ( 2 π k Δ ) d k = ( p + q ) S ( k ) cos ( 2 π k Δ ) d k + 2 p q S ( k ) cos ( 2 π k Δ s ) cos ( 2 π k Δ ) d k .
2 p q S ( k ) cos ( 2 π k Δ s ) cos ( 2 π k Δ ) d k = p q S ( k ) cos ( 2 π k Δ ) d k [ δ ( Δ Δ s ) + δ ( Δ + Δ s ) ] ,
I ( Δ ) = 2 g ( Δ ) cos ( 2 π k 0 Δ ) ,
I ( Δ ) = 2 ( p + q ) g ( Δ ) cos ( 2 π k 0 Δ ) + 2 p q [ g ( Δ ) cos ( 2 π k 0 Δ ) ] [ δ ( Δ Δ s ) + δ ( Δ + Δ s ) ] .
ε = ε 0 cos ( 2 π β Δ + ϕ 0 ) ,
S ( k ) = 0 Δ M cos ( 2 π k 1 Δ ) cos ( 2 π k Δ ) d Δ + π k 1 ε 0 0 Δ M sin [ 2 π ( k 1 β ) Δ ] cos ( 2 π k Δ ) d Δ π k 1 ε 0 0 Δ M sin [ 2 π ( k 1 + β ) Δ ] cos ( 2 π k Δ ) d Δ .
f ν = 2 β V ,

Metrics